Modelling competition in demand-based optimization models

Stefano Bortolomiol Virginie Lurkin Michel Bierlaire

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne

OR2018

Brussels, 14 September 2018

2 Modelling the problem

Competition

- In many markets competition is present in the form of oligopolies (regulations, barriers to entry, mergers, acquisitions, alliances).
- In transportation, deregulation often led to oligopolistic markets.
 - Airlines
 - Railways
 - Buses
 - Multi-modal networks

How to study competitive transport markets?

- Modelling demand
- Modelling supply
- Modelling competition

Demand

- Each customer chooses the alternative that maximizes his/her utility.
- Customers have different tastes and socioeconomic characteristics that influence their choice.

Supply

- Operators take decisions that optimize their objective function (e.g. revenue maximization).
- Decisions can be related to pricing, capacity, frequency, availability ...
- Decisions are influenced by:
 - The preferences of the customers
 - The decisions of the competitors

Competition

- We consider non-cooperative games.
- We aim at understanding the Nash equilibrium solutions of such games, i.e. stationary states of the system in which no competitor has an incentive to change its decisions.

The framework

Three elements to be modelled: customers, operators and market.

• **Customers**: discrete choice models take into account preference heterogeneity and model individual decisions.

The framework

Three elements to be modelled: customers, operators and market.

- **Customers**: discrete choice models take into account preference heterogeneity and model individual decisions.
- Operators: a mixed integer program can maximize any relevant objective function.

The framework

Three elements to be modelled: customers, operators and market.

- **Customers**: discrete choice models take into account preference heterogeneity and model individual decisions.
- Operators: a mixed integer program can maximize any relevant objective function.
- Market: Nash equilibrium solutions are found by enforcing best response constraints.

The framework: customer level

Non-linear formulation:

- The probability of customer *n* ∈ *N* choosing alternative *i* ∈ *I* depends on the discrete choice model specification.
- For the logit model, there exists a closed-form expression:

$$P_{in} = \frac{\exp(V_{in})}{\sum_{j \in I} \exp(V_{jn})}$$

• For other discrete choice models, there is no closed-form expression.

The framework: customer level

Linear formulation:

- A linear formulation can be obtained by relying on simulation to draw from the distribution of the error term of the utility function.
- For all customers and all alternatives, *R* draws of are extracted from the error term distribution. Each ξ_{inr} corresponds to a different behavioral scenario.

$$U_{inr} = \beta_{in} p_{in} + q_{in} + \xi_{inr}$$

• In each scenario, customers choose the alternative with the highest utility:

$$w_{inr} = 1$$
 if $U_{inr} = \max_{j \in I} U_{jnr}$, and $w_{inr} = 0$ otherwise

• Over multiple scenarios, the probability of customer *n* choosing alternative *i* is given by

$$P_{in} = \frac{\sum_{r \in R} w_{inr}}{R}$$

The framework: operators level

- We assume that an operator k ∈ K can decide on the price p_{in} of each alternative i ∈ I for all customers n ∈ N.
- Stackelberg game: the operator (the leader) knows the best response of the customers ("collective" follower) to all strategies.
- Objective function to be maximized by operator k:

$$V_k = \sum_{i \in I} \sum_{n \in N} p_{in} P_{in}$$

Non-linear optimization model for a single operator

$$\begin{array}{ll} \max & V = \sum_{i \in I} \sum_{n \in N} p_{in} P_{in} \\ \text{s.t.} & P_{in} = \frac{\exp(U_{in})}{\sum_{j \in I} \exp(U_{jn})} & \forall i \in I, \forall n \in N \\ & U_{in} = \beta_{in} p_{in} + q_{in} & \forall i \in I, \forall n \in N \end{array}$$

Linear optimization model for a single operator

$$\begin{array}{ll} \max & V = \sum_{i \in I} \sum_{n \in N} p_{in} P_{in} \\ \text{s.t.} & P_{in} = \frac{\sum_{r \in R} w_{inr}}{R} & \forall i \in I, \forall n \in N \\ U_{inr} = \beta_{in} p_{in} + q_{in} + \xi_{inr} & \forall i \in I, \forall n \in N, \forall r \in R \\ U_{inr} \leq U_{nr} & \forall i \in I, \forall n \in N, \forall r \in R \\ U_{nr} \leq U_{inr} + M_{Unr} (1 - w_{inr}) & \forall i \in I, \forall n \in N, \forall r \in R \\ \sum_{i \in I} w_{inr} = 1 & \forall n \in N, \forall r \in R \end{array}$$

 $w_{inr} \in \{0,1\}$ $\forall i \in I, \forall n \in N, \forall r \in R$

The framework: market level

- The payoff of an operator also depends on the strategies of the competitors.
- Let's define as X_k the set of strategies that can be played by operator $k \in K$.
- Condition for Nash equilibrium (best response constraints):

$$V_k = V_k^* = \max_{x_k \in X_k} V_k(x_k, x_{\mathcal{K} \setminus \{k\}}) \qquad \forall k \in \mathcal{K}$$

- Nash (1951): finite games have at least one mixed strategy equilibrium solution.
- Finite/infinite strategy sets; pure/mixed strategies; continuous/discrete payoff function.

A fixed-point iteration method

- Sequential algorithm to find Nash equilibrium solutions of a k-player game:
 - Initialization: players select an initial feasible strategy.
 - Iterative phase: players take turns and each plays its best response pure strategy to the current solution.
 - Termination criterion: either a Nash equilibrium or a cyclic equilibrium is reached.

A mixed integer model for the fixed-point problem

- We can write a model that minimizes the distance between two consecutive fixed-point iterations.
- A solution for a two-operator problem: (x_1^b, x_2^b)
- Optimization problems for the operators:

$$egin{aligned} & x_1^* = rg\max_{x_1 \in X_1} V_1(x_1, x_2^b) \ & x_2^* = rg\max_{x_2 \in X_2} V_2(x_1^b, x_2) \end{aligned}$$

• Fixed-point problem:

$$\min_{x_1, x_2, x_1^*, x_2^*} \|x_1^* - x_1^b\| + \|x_2^* - x_2^b\|$$

Initial configuration

- No optimization at operator level: any feasible strategy could be selected.
- Constraints:
 - Customer choice
 - Continuous (MINLP), or
 - Binary (MILP)
 - Customer utility maximization

$$\begin{split} \sum_{i \in I} w_{inr}^{b} &= 1 & \forall n \in N, \forall r \in R \\ U_{inr}^{b} &= \beta_{in} \rho_{in}^{b} + q_{in} + \xi_{inr} & \forall i \in I, \forall n \in N, \forall r \in R \\ U_{inr}^{b} &\leq U_{nr}^{b} & \forall i \in I, \forall n \in N, \forall r \in R \\ U_{nr}^{b} &\leq z_{inr}^{b} + M(1 - w_{inr}^{b}) & \forall i \in I, \forall n \in N, \forall r \in R \end{split}$$

Best response configurations

- Each operator solves an optimization problem having the following constraints:
 - Customer choice
 - Continuous (MINLP), or
 - Binary (MILP)
 - Customer utility maximization
 - Best response

Best response configurations

Best response constraints:

$$V_{ks} = \frac{1}{R} \sum_{i \in I_k} \sum_{n \in N} \sum_{r \in R} p_{ins} w_{inrs}^a \qquad \forall k \in K, \forall s \in S_k$$
$$V_{ks} \le V_{ks}^{max} \qquad \forall s \in S_k$$
$$V_{ks}^{max} \le V_{ks} + M(1 - x_{ks}) \qquad \forall s \in S_k$$

$$\sum_{s \in S} x_{ks} = 1$$

Customer constraints:

$$\begin{split} U_{inrs}^{a} &= \beta_{in} p_{ins} + q_{in} + \xi_{inr} & \forall i \in I_{k}, \forall n \in N, \forall r \in R, \forall s \in S_{k} \\ U_{inrs}^{a} &= U_{inr}^{b} & \forall i \in I \setminus I_{k}, \forall n \in N, \forall r \in R, \forall s \in S_{k} \\ \sum_{i \in I} w_{inrs}^{a} &= 1 & \forall n \in N, \forall r \in R, \forall s \in S_{k} \\ U_{inrs}^{a} &\leq U_{nrs}^{a} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S_{k} \\ U_{nrs}^{a} &\leq z_{inrs}^{a} + M(1 - w_{inrs}^{a}) & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S_{k} \end{split}$$

Objective function

• Minimization problem:

$$z^{*} = \min_{x_{1}, x_{2}, x_{1}^{*}, x_{2}^{*}} \|x_{1}^{*} - x_{1}^{b}\| + \|x_{2}^{*} - x_{2}^{b}\|$$

If z* = 0, we have an equilibrium. What can we say about this equilibrium?
If z* > 0, can we conclude something? Are we in an equilibrium region?

Numerical experiments

- Case study: 3 parking choices. 2 owned by 2 different operators and 1 opt-out option. Parameter estimation available in the literature.
- Tests: non-linear and linear formulations with logit and mixed logit specifications.

	Non-linear	Linear
Logit	-	ξ
Mixed logit	β	β,ξ

Figure: Random draws needed in the different sets of experiments

Numerical experiments

- Model specification: drawing from the error term distribution (R = 50, 100, 200) gives good approximation of the choice probabilities found with the logit formula.
- Preliminary results: equilibrium solutions are found for all tested instances with the MILP formulation.
- Computational times:
 - Logit:
 - The non-linear model is faster (no need for simulation).
 - The time required by the linear model increases with the number of draws.
 - Mixed logit:
 - The non-linear model (highly non convex) does not converge for larger instances.
 - The linear model outperforms the non-linear model on larger instances.

2 Modelling the problem

Open questions and future work

- The current model uses finite strategy sets (i.e. price discretization). Is it possible to reformulate the problem with the help of complementarity?
- How can the structure of the problem be exploited to efficiently search for equilibria in the solution space?
- Is it possible to compare different equilibrium solution or to prove uniqueness within a region of the solution space?

Questions?

Stefano Bortolomiol

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne (EPFL)

Email: stefano.bortolomiol(at)epfl.ch

SB, VL, MB Modelling competition in demand-based optimization models