Results 0000000 Heuristic method

Conclusions

Integrated schedule planning with supply-demand interactions

Bilge Atasoy Matteo Salani Michel Bierlaire

Transport and mobility laboratory EPFL

STRC May 13, 2011

Results 0000000 Heuristic method

Conclusions

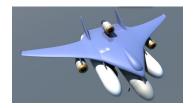
Motivation

• Increased air travel demand

• Demand responsiveness

- Flexible supply capacity
- Improved demand management

Sustainability


Integrated schedule planning 00000

Results 0000000 Heuristic method

Conclusions

Clip-Air concept

- Flexible capacity with modular-detachable capsules
- Carrier and capsule separation: security, maintenance, storage and crew costs
- Multi-modal transportation for both passenger and cargo
- Sustainable transportation
 - Gas emissions
 - Noise
 - Accident rates

Mot	ivat	ion
11100	ivat	1011

Results 0000000 Heuristic method

Conclusions

Objectives

- Development of integrated schedule design and fleet assignment model
 - maximize revenue operating costs
 - itinerary-based demand
 - integration of supply-demand interactions
 - logit demand model \Rightarrow pricing
 - spill and recapture effects
 - Fare-class segmentation
 - demand model for each segment
 - seat allocation for business and economy
- Solution techniques for the resulting mixed integer nonlinear problem
- Comparative analysis between standard fleet and Clip-Air

Integrated schedule planning •••••• Results 0000000 Heuristic method

Conclusions

Demand model for itinerary choice

• Utility of itinerary *i*, class *h*:

$$V_{i}^{h} = \beta_{\textit{fare}}^{h} p_{i}^{h} + \beta_{\textit{time}}^{h} \textit{time}_{i} + \beta_{\textit{stops}}^{h} \textit{nonstop}_{i}$$

- p_i^h is the price of itinerary *i* for class *h*.
- *time*_i, binary variable, 1 if departure time is between 07:00-11:00.
- nonstop_i, binary variable, 1 if it is a non-stop itinerary.
- Demand for class *h* for each itinerary *i* in market segment *s*:

$$\tilde{d}_{i}^{h} = D_{s}^{h} \frac{\exp\left(V_{i}^{h}\right)}{\sum_{j \in I_{s}} \exp\left(V_{j}^{h}\right)}$$

- D_s^h is the total expected demand for class h and segment s.
- $\tilde{d}_i^{\tilde{h}}$ serves as an upper bound for the actual demand.

Results 0000000

Spill and recapture effects • Example

- In case of capacity shortage some passengers may not fly on their desired itineraries
- They may accept to fly on other available itineraries in the same market segment
- Recapture ratio is given by:

$$b_{i,j}^{h} = \frac{\exp(V_{j}^{h})}{\sum_{k \in I_{s} \setminus i} \exp(V_{k}^{h})}$$

• *No-purchase* represented by the subset $I'_s \in I_s$ for segment *s*.

Integrated model - Supply part

$$\max \sum_{s \in S} \sum_{h \in \mathcal{H}} \sum_{i \in (I_s \setminus I_s')} (d_s^h - \sum_{\substack{j \in I_s \\ i \neq j}} t_{j,i}^h + \sum_{j \in (I_s \setminus I_s) \atop \substack{j \in [I_s \setminus I_s] \\ i \neq j \neq j}} t_{j,i}^h b_{j,i}^h) p_s^h - \sum_{\substack{k \in \mathcal{K} \\ i \neq j \neq j}} C_{k,f} \times_{k,f} : revenue - cost$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
: mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)$$

$$y_{k,a,t^-} + \sum_{f \in In(k,a,t)} x_{k,f} = y_{k,a,t^+} + \sum_{f \in Out(k,a,t)} x_{k,f}: flow conservation \qquad \forall [k,a,t] \in N$$
(4)

$$\sum_{a \in A} y_{k,a,t_n} + \sum_{f \in CT} x_{k,f} \le R_k: \text{ fleet availability} \qquad \forall k \in K$$
(5)

$$y_{k,a,minE_a^-} = y_{k,a,maxE_a^+}: \text{ cyclic schedule} \qquad \forall k \in K, a \in A \qquad (6)$$

$$\sum_{s \in S} \sum_{i \in (l_s \setminus l'_s)} \delta_{i,f} d_i^h - \sum_{\substack{j \in l_s \\ i \neq j}} \delta_{i,f} t_{i,j}^h + \sum_{\substack{j \in (l_s \setminus l'_s) \\ i \neq j}} \delta_{i,f} t_{j,i}^h b_{j,i}^h \le \sum_{k \in K} \pi_{k,f}^h: \text{ seat allocation} \qquad \forall h \in H, f \in F$$
(7)

$$\sum_{h \in H} \pi_{k,f}^{h} = Q_{k} x_{k,f} : \text{ seat capacity} \qquad \forall f \in F, k \in K$$
(8)

$$x_{k,f} \in \{0,1\} \qquad \qquad \forall k \in K, f \in F \qquad (9)$$

$$y_{k,a,t} \ge 0 \qquad \qquad \forall [k,a,t] \in N \qquad (10)$$

$$\pi_{k,f}^h \ge 0 \qquad \qquad \forall h \in H, k \in K, f \in F \qquad (11)$$

Integrated schedule planning

 $\tilde{d}_{i}^{h} = D_{\epsilon}^{h} v_{\epsilon}^{h} \exp(V_{i}^{h})$: logit demand

 $\sum_{i \in I_{s}} v_{s}^{h} \exp(V_{i}^{h}) = 1: \text{ choice probability}$

 $b_{i,j}^{h} = \frac{\exp(V_{j}^{h})}{\frac{1}{a_{i,h}^{h}} - \exp(V_{i}^{h})}$: recapture ratio

 $0 < p_i^h < UB_i^h$: upper bound on price

Results 0000000 Heuristic method

Conclusions

Integrated model - Demand part •••

- $\sum_{\substack{j \in J_s \\ i \neq j}} t_{i,j}^h \le d_i^h: \text{ total spill} \qquad \forall s \in S, h \in H, i \in (I_s \setminus I_s') \qquad (12)$
 - $\forall s \in S, h \in H, i \in I_s$ (13)

$$\forall s \in S, h \in H$$
 (14)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (15)

$$d_i^h \leq \tilde{d}_i^h \leq D_i^h$$
: realized demand $\forall h \in H, i \in I$ (16)

$$\forall h \in H, i \in I$$
 (17)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (18)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (19)

$$\forall s \in S, h \in H \qquad (20)$$

 $t_{i,j}^h \ge 0$ $b_{i,j}^h \ge 0$ $v_{\epsilon}^h > 0$

Integrated schedule planning $\circ \circ \circ \circ \bullet$

Results 0000000 Heuristic method

Conclusions

Model extension for Clip-Air

- Decision variables for the assignment of wing and capsules: $x_f^w \in \{0,1\}$ $x_{k,f} \in \{0,1\}$ for $k \in \{1,2,3\}$
- Operating cost:

$$\sum_{f\in F} C_f^w x_f^w + \sum_{k\in K} C_{k,f} x_{k,f}$$

Constraints:

$$\sum_{k \in K} x_{k,f} = 1 \quad \forall f \in F^M: \text{ mandatory flights}$$
$$\sum_{k \in K} x_{k,f} \le x_f^w \quad \forall f \in F: \text{ capsule - wing}$$

NЛ	at is	/ati	0.0
IVI	OLIN	/du	OII

Results

Heuristic method

Conclusions

Results

- Dataset from a major European airline
- Other inputs:
 - Cost figures for Clip-Air
 - Weight differences => adjustment of fuel cost and airport and air navigation charges
 - Capsule wing separation => adjustment of crew cost
 - Parameters of the demand model
- Model is implemented in AMPL and solved with BONMIN
- Results provide the schedule design, fleet assignment, seat allocation for fare classes and pricing.

Integrated schedule planning 00000

Results

Heuristic method

Conclusions

Demand model parameters

- Estimation of logit model parameters by maximum likelihood estimation using BIOGEME
- $\bullet\,$ Booking data does not have the non-chosen alternatives $\Rightarrow\,$ lack of variability
- Adjusted parameters to have enough elasticity

	Business demand	Economy demand
β_{fare}	-0.025	-0.050
β_{time}	0.323	0.139
$\beta_{nonstop}$	1.150	0.900

Integrated schedule planning 00000

Results

Heuristic method

Conclusions

Small data instance

Airports	3 (ORY, LYS, NCE)
Flights	9
Passengers	800
Capsule capacity	50
Standard fleet types	A318 (123), ERJ145 (50)
Total fleet size (seats)	400
Fare classes	Business, economy

	origin	destination	expected demand	nonstop	time
1	ORY	LYS	132	1	1
2	ORY	LYS	133	1	0
3	ORY	NCE	68	1	1
4	NCE	ORY	56	1	1
5	ORY	NCE	79	1	0
6	NCE	ORY	63	1	0
7	ORY	NCE	80	1	0
8	LYS	ORY	108	1	1
9	LYS	ORY	81	1	0

Results

Heuristic method

Conclusions

Impact of demand model

Competing itineraries with close utility values, high price elasticity

	Fixed model	Integrated model	
Operating cost	72,482	65,635	-
Revenue	104,142	102,497	
Profit	31,660	36,862	
Transported pax.	580	532	Integrated model increases
Flight count	6	8	the prices
Average pax/flight	96	66	
Total Flight Hours (min)	425	590	Fixed demand model
Used fleet	2 A318	2 A318	
	1 ERJ145	3 ERJ145	accumulates the demand
Used capacity (seats)	296	396	

			Fixed demand model		Integrated der	nand model	outside
	0	D	realized demand	fixed price	realized demand	realized price	price
1	ORY	LYS	50	162	123	179	185
2	ORY	LYS	123	162	50	194	185
3	ORY	NCE	123	200	50	220	250
4	NCE	ORY	111	212	50	230	250
5	ORY	NCE	0	200	50	218	250
6	NCE	ORY	0	212	50	228	250
7	ORY	NCE	0	200	0	214	250
8	LYS	ORY	123	162	109	159	185
9	LYS	ORY	50	162	50	172	185

Results

Heuristic method

Conclusions

Impact of demand model

Competing itineraries with close utility values, high price elasticity

	Fixed model	Integrated model	
Operating cost	72,482	65,635	-
Revenue	104,142	102,497	
Profit	31,660	36,862	
Transported pax.	580	532	Integrated model increases
Flight count	6	8	the prices
Average pax/flight	96	66	
Total Flight Hours (min)	425	590	Fixed demand model
Used fleet	2 A318	2 A318	
	1 ERJ145	3 ERJ145	accumulates the demand
Used capacity (seats)	296	396	

			Fixed demand model		Integrated der	nand model	outside
	0	D	realized demand	fixed price	realized demand	realized price	price
1	ORY	LYS	50	162	123	179	185
2	ORY	LYS	123	162	50	194	185
3	ORY	NCE	123	200	50	220	250
4	NCE	ORY	111	212	50	230	250
5	ORY	NCE	0	200	50	218	250
6	NCE	ORY	0	212	50	228	250
7	ORY	NCE	0	200	0	214	250
8	LYS	ORY	123	162	109	159	185
9	LYS	ORY	50	162	50	172	185

Results

Heuristic method

Conclusions

Impact of demand model

Competing itineraries with close utility values, high price elasticity

	Fixed model	Integrated model	
Operating cost	72,482	65,635	-
Revenue	104,142	102,497	
Profit	31,660	36,862	
Transported pax.	580	532	Integrated model increases
Flight count	6	8	the prices
Average pax/flight	96	66	
Total Flight Hours (min)	425	590	Fixed demand model
Used fleet	2 A318	2 A318	
	1 ERJ145	3 ERJ145	accumulates the demand
Used capacity (seats)	296	396	

			Fixed demand model		Integrated der	nand model	outside
	0	D	realized demand	fixed price	realized demand	realized price	price
1	ORY	LYS	50	162	123	179	185
2	ORY	LYS	123	162	50	194	185
3	ORY	NCE	123	200	50	220	250
4	NCE	ORY	111	212	50	230	250
5	ORY	NCE	0	200	50	218	250
6	NCE	ORY	0	212	50	228	250
7	ORY	NCE	0	200	0	214	250
8	LYS	ORY	123	162	109	159	185
9	LYS	ORY	50	162	50	172	185

Results

Heuristic method

Conclusions

Cheaper competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	30,966	23,141	31,250	17,159	
Transported pax.	541	400	543	499	
Flight count	8	8	8	8	
Comparable competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	31,660	36,862	31,617	36,484	
Transported pax.	579	531	546	400	
Flight count	6	8	8	8	
	More ex	pensive competing it	ineraries		
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	32,849	41,657	31,645	40,487	
Transported pax.	585	535	579	400	
Flight count	6	8	6	8	

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

Results

Heuristic method

Conclusions

Cheaper competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model Integrated model		Fixed demand model	Integrated model	
Profit	30,966	23,141	31,250	17,159	
Transported pax.	541	400	543	499	
Flight count	8	8	8	8	
Comparable competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	31,660	36,862	31,617	36,484	
Transported pax.	579	531	546	400	
Flight count	6	8	8	8	
	More ex	pensive competing it	ineraries		
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	32,849	41,657	31,645	40,487	
Transported pax.	585	535	579	400	
Flight count	6	8	6	8	

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

Results

Heuristic method

Conclusions

Cheaper competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model Integrated model		Fixed demand model	Integrated model	
Profit	30,966	23,141	31,250	17,159	
Transported pax.	541	400	543	499	
Flight count	8	8	8	8	
Comparable competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	31,660	36,862	31,617	36,484	
Transported pax.	579	531	546	400	
Flight count	6	8	8	8	
	More ex	pensive competing it	ineraries		
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	32,849	41,657	31,645	40,487	
Transported pax.	585	535	579	400	
Flight count	6	8	6	8	

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

Results

Heuristic method

Conclusions

Cheaper competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	30,966	23,141	31,250	17,159	
Transported pax.	541	400	543	499	
Flight count	8	8	8	8	
Comparable competing itineraries					
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	31,660	36,862	31,617	36,484	
Transported pax.	579	531	546	400	
Flight count	6	8	8	8	
	More ex	pensive competing it	ineraries		
	High price elasticity		Low price elasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	32,849	41,657	31,645	40,487	
Transported pax.	585	535	579	400	
Flight count	6	8	6	8	

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

Results

Heuristic method

Conclusions

Standard planes vs Clip-Air - Small data instance

	Standard Fleet	Clip-Air
Operating cost	65,635	52,924
Revenue	118,494	143,193
Profit	52,859	81,269
Transported pax.	532	621
	124 B, 408 E	132 B, 489 E
Flight count	8	8
Average pax/flight	66	78
Total Flight Hours (min)	590	590
Used fleet	2 A318	4 wings
	3 ERJ145	7 capsules
Used capacity (seats)	396	350
Running time(min)	0.5	3.5

Integrated schedule planning 00000

Results

Standard planes vs Clip-Air - Large data instance

An instance with more fleet types, 18 flights, 1096 passengers for the same OD pairs. Running time considerably increases.

	Standard Fleet	Clip-Air
Operating cost	128,080	89,512
Revenue	188,405	198,905
Profit	60,325	109,393
Transported pax.	828	909
	183 B, 645 E	191 B, 718 E
Flight count	16	16
Average pax/flight	52	57
Total Flight Hours (min)	1200	1200
Used fleet	2 A318, 2 A319	5 wings
	1 ERJ135, 3 ERJ145	8 capsules
Used capacity (seats)	591	400
Running time (min)	2090	1470
Optimality gap	3.2%	1.5%

Results 0000000 Heuristic method

Heuristic method Model

- The resulting mixed integer nonlinear problem is highly complex.
- We propose a heuristic method based on Lagrangian relaxation, sub-gradient optimization and a Lagrangian heuristic.
- Seat allocation constraint is relaxed.
- Problem is decomposed into 2 subproblems: revenue maximization and fleet assignment:

$$\begin{aligned} z_{REV}(\lambda) &= Max \sum_{h \in H} \sum_{f \in F} \sum_{s \in S} \sum_{i \in (l_s \setminus l'_s)} \delta_{i,f}(p_i^h - \lambda_f^h) \left(d_i^h - \sum_{\substack{j \in l_s \\ i \neq j}} t_{j,j}^h + \sum_{\substack{j \in (l_s \setminus l'_s) \\ i \neq j}} t_{j,i}^h b_{j,i}^h \right) \\ z_{FAM}(\lambda) &= Min \sum_{k \in K} \sum_{f \in F} \left(C_{k,f} \times_{k,f} - \sum_{h \in H} \lambda_f^h \pi_{k,f}^h \right) \end{aligned}$$

 λ_f^h represent the Lagrangian multipliers for each fare class h and flight f.

Integrated schedule planning 00000

Results 0000000 Heuristic method

Conclusions

Conclusions and future work

Clip-Air

- Potential increase in transportation capacity and profit
- Update of the cost figures of Clip-Air
- Integrated scheduling model
 - Further investigation of the effects of the demand model
- Heuristic method
 - Finalization of the implementation
 - Results on the performance of the heuristic

Integrated schedule planning 00000

Results 0000000 Heuristic method

Conclusions

Thank you for your attention !

Integrated schedule planning 00000 Results 0000000 Heuristic method

Conclusions

Spill and recapture effects - Illustration • Back

Information regarding the itineraries in segment ORY-NCE:

OD	fare	nonstop	time
ORY-NCE ₁	220	1	1
ORY-NCE ₂	218	1	0
ORY-NCE ₃	214	1	0
ORY-NCE	250	1	1

Resulting recapture ratios:

	ORY-NCE ₁	ORY-NCE ₂	ORY-NCE ₃	ORY-NCE
ORY-NCE ₁	0	0.401	0.503	0.096
ORY-NCE ₂	0.417	0	0.490	0.093
ORY-NCE ₃	0.463	0.434	0	0.103

Integrated schedule planning 00000 Results 0000000 Heuristic method

Conclusions

Price elasticity of demand

• Price elasticity of logit:

$$(1-P^h(i))p_i^h \beta^h_{fare}$$

- When β_{fare} is -0.05 and -0.025 is for economy and business demand, the elasticities are around -3 and -2.
- $\bullet\,$ When we decrease them to -0.03 and -0.015 elasticity values become -2 and -1.3

