Demand model

Integrated model

Heuristic

Results

Transformation

On-going work

Flexibility in air transportation: through new technologies and advanced supply-demand interactions

Bilge Atasoy, Matteo Salani, Michel Bierlaire

February 13, 2013

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
	0000	000				

New technology: Clip-Air

- Flexible capacity
- Modular-detachable capsules
- Wing and capsule separation
- Multi-modality
- Passenger and cargo
- Sustainability
 - Gas emissions
 - Noise
 - Accident rates

Introduction	Demand model 0000	Integrated model	Heuristic	Results	Transformation	On-going work
	E 1					

Clip-Air: Flexible capacity

- A fleet (wing & capsule) assignment model with spill and recapture
- Clip-Air better utilizes the capacity
 - More passengers ...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity
- Results are robust to the cost values of Clip-Air
- Atasoy, B., Salani, M., Bierlaire, M., and Leonardi, C. (to appear in 2013 April). Impact analysis of a flexible air transportation system, European Journal of Transport and Infrastructure Research 13(2).

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
Today	's talk					

• Advance supply-demand interactions

- Itinerary choice model
- Integration into the planning model
- Solution methods for the integrated model
 - A local search heuristic
 - Log transformation of the logit model

Introduction	Demand model •000	Integrated model	Heuristic	Results	Transformation	On-going work
1.1	1 .					

- Itinerary choice model
 - Market segments, s, defined by the class and each OD pair
 - Itinerary choice among the set of alternatives, I_s , for each segment s
 - For each itinerary $i \in I_s$ the utility is defined by:

 $\begin{aligned} \mathbf{V}_{i} &= \mathbf{ASC}_{i} + \beta_{p} \cdot \ln(p_{i}) + \beta_{time} \cdot \operatorname{time}_{i} + \beta_{morning} \cdot \operatorname{morning}_{i} \\ \mathbf{V}_{i} &= \mathbf{V}_{i}(p_{i}, z_{i}, \beta) \end{aligned}$

- ASC_i : alternative specific constant
- p is the only policy variable and included as log
- p and time are interacted with non-stop/stop
- $\operatorname{morning}$ is 1 if the itinerary is a morning itinerary
- No-revenue represented by the subset $I'_s \in I_s$ for segment s.

Introduction	Demand model ○●○○	Integrated model	Heuristic	Results	Transformation	On-going work
ltinerar	y choice r	nodel				

• Market share and demand for itinerary *i* in market segment *s*:

$$\mathrm{ms}_{i} = \frac{\exp\left(V_{i}(p_{i}, z_{i}, \beta)\right)}{\sum_{j \in I_{s}} \exp\left(V_{j}(p_{j}, z_{j}, \beta)\right)} \quad \Rightarrow \quad d_{i} = D_{s} m s_{i}$$

- D_s is the total expected demand for market segment s.

- Spill and recapture effects: Capacity shortage ⇒ passengers may be recaptured by other itineraries (instead of their desired itineraries)
- Recapture ratio is given by:

$$b_{i,j} = \frac{\exp(V_j(p_j, z_j, \beta))}{\sum_{k \in I_s \setminus \{i\}} \exp(V_k(p_k, z_k, \beta))}$$

Introduction	Demand model 00●0	Integrated model	Heuristic	Results	Transformation	On-going work
Estima	tion					

- **Revealed preferences (RP) data:** Booking data from a major European airline
 - Lack of variability
 - Price inelastic demand
- RP data is combined with a stated preferences (SP) data
- Time, cost and morning parameters are **fixed** to be the same for the two datasets.
- A scale parameter is introduced for SP to capture the differences in variance.

Further details in Atasoy, B., and Bierlaire, M. (2012). An air itinerary choice model based on a mixed RP/SP dataset. Technical report TRANSP-OR 120426. Transport and Mobility Laboratory, ENAC, EPFL.

ln+	rodu	uctic	n n
IIILI	out	lictic	11

Demand model

Integrated model

Heuristic

Results

Transformation

On-going work

Estimation results

	β _f	are	β _{ti}		
	non-stop	one-stop	non-stop	one-stop	$\beta_{morning}$
economy	-2.23	-2.17	-0.102	-0.0762	0.0283
business	-1.97	-1.97	-0.104	-0.0821	0.079

• Price elasticity of demand:

$$E_{price_i}^{P_i} = \frac{\partial P_i}{\partial price_i} \cdot \frac{price_i}{P_i}$$

An example

- for a non-stop itinerary
 - $\bullet\,$ price elasticity for economy is -2.03 and -1.86 for business
- for a one-stop itinerary
 - $\bullet\,$ price elasticity for economy is -2.14 and -1.95 for business

• Aim: to take better fleeting decisions with the information provided by the demand model

Integrated airline scheduling, fleeting and pricing

Decision variables:

- $x_{k,f}$: binary, assignment of aircraft k to flight f
- $\pi_{k,f}^h$: allocated seats for class *h* on flight *f* aircraft *k*
- p_i: price of itinerary i
- *d_i*: demand of itinerary *i*
- $t_{i,j}$: spilled passengers from itinerary i to j

ntroduction Demand model 0000

model Inte

Integrated model

Heuristic

Results

Transformation On-going work

Integrated model - Scheduling & fleeting

$$Max \sum_{h \in \mathcal{H}} \sum_{s \in S^h} \sum_{i \in (I_s \setminus I_s')} (d_i - \sum_{j \in I_s} t_{i,j} + \sum_{j \in (I_s \setminus I_s')} t_{j,i} b_{j,i}) p_i - \sum_{\substack{k \in K \\ f \in F}} C_{k,f} x_{k,f}: \text{ revenue - cost}$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
: mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)$$

$$y_{k,a,t^-} + \sum_{f \in \mathit{In}(k,a,t)} x_{k,f} = y_{k,a,t^+} + \sum_{f \in \mathit{Out}(k,a,t)} x_{k,f^:} \textit{ flow conservation} \qquad \forall [k,a,t] \in N \qquad (4)$$

$$\sum_{a \in A} y_{k,a,minE_a^-} + \sum_{f \in CT} x_{k,f} \le R_k: \text{ fleet availability} \qquad \forall k \in K$$
(5)

$$y_{k,a,minE_a^-} = y_{k,a,maxE_a^+}: cyclic schedule \qquad \forall k \in K, a \in A$$
(6)

$$\sum_{h \in H} \pi_{k,f}^{h} = Q_{k} x_{k,f} : seat \ capacity \qquad \forall f \in F, k \in K$$
(7)

$$x_{k,f} \in \{0,1\} \qquad \qquad \forall k \in K, f \in F$$
(8)

$$y_{k,a,t} \ge 0$$
 $\forall [k,a,t] \in N$ (9

- Itinerary-based fleet assignment & Spill and recapture
- Lohatepanont and Barnhart 2004

ntroduction	Demand	m
	0000	

nodel Integr 000

Integrated model

Heuristic I

Results

Integrated model - Revenue management - Pricing

$$\begin{split} &\sum_{s \in S^{h}} \sum_{i \in (I_{s} \setminus I'_{s})} \delta_{i,f}(d_{i} - \sum_{j \in I_{s}} t_{i,j} + \sum_{j \in (I_{s} \setminus I'_{s})} t_{j,i}b_{j,i}) \leq \sum_{k \in K} \pi^{h}_{k,f}: demand-capacity & \forall h \in H, f \in F \quad (10) \\ &\sum_{j \in I_{s}} t_{i,j} \leq d_{i}: \text{ total spill} & \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}) \quad (11) \\ &\tilde{d}_{i} = D_{s} \frac{\exp(V_{i}(p_{i}, z_{i}, \beta))}{\sum_{j \in I_{s}} \exp(V_{j}(p_{j}, z_{j}, \beta))}: \text{ logit demand} & \forall h \in H, s \in S^{h}, i \in I_{s} \quad (12) \\ &b_{i,j} = \frac{\exp(V_{j}(p_{i}, z_{j}, \beta))}{\sum_{k \in I_{s} \setminus \{i\}} \exp(V_{k}(p_{k}, z_{k}, \beta))}: \text{ recapture ratio} & \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I'_{s}), j \in I_{s} \quad (13) \\ &d_{i} \leq \tilde{d}_{i}: \text{ realized demand} & \forall h \in H, s \in S^{h}, i \in I_{s} \quad (14) \\ &LB_{i} \leq p_{i} \leq UB_{i}: \text{ bounds on price} & \forall h \in H, s \in S^{h}, i \in I_{s} \quad (15) \\ &t_{i,j}, b_{i,j} \geq 0 & \forall h \in H, s \in S^{h}, i \in I_{s} \quad (16) \\ &\pi^{h}_{k,f} \geq 0 & \forall h \in H, k \in K, f \in F \quad (17) \end{split}$$

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
Heurist	ic method	d				

- Mixed Integer Non-convex Problem
- BONMIN solver (Bonami et al. 2008) is able to converge on instances with about 35 flights.
- We devised a heuristic procedure based on two subproblems:
- FAM^{LS} : price-inelastic schedule planning model \Rightarrow MILP
 - Prices fixed
 - Optimizes the schedule design and fleet assignment
- REV^{LS} : Revenue management with fixed capacity \Rightarrow NLP
 - Schedule design and fleet assignment fixed
 - Optimizes the revenue

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
Proce	dure					
Require: Solve F Solve F repeat Pric New VNS Solv assig	Average prices fr AM^{LS} with given EV^{LS} with the i e sampling: Obt market share an 5 -Fixing: Fix a s e FAM ^{LS} with gnments	om the data n price, obtain init nitial FA solution ain new prices <i>bas</i> d recapture ratios ubset of the FAs the sampled price,	ial FA solut sed on spill with the no based on sp market sha	ion ew prices <i>ill</i> ıre, recaptı	ire ratios and fix	ed
Solv	$e \mathbf{REV}^{L3}$ with f	ixed capacity				
it Pi	rotit improved th Indate best profit	en •				
Ň	/NS - Intensifica	tion : fix more FA:	5			
else	if No improveme	ent in the profit fo	or the last 3	iterations	then	
V	NS - Diversifica	tion: Fix less FAs				
end	if					
until ti	$me \ge time_{max}$					

Introduction Demand model Integrated model Heuristic Results Transformation On-going work

Local search based on spill

- Neighborhood solutions are visited based on the spill rather than a fully random search
- Price sampling:
 - A random price is drawn for each itinerary
 - $\bullet\,$ If the spilled passengers are higher than the average $\Rightarrow\,$ decrease the price
 - Otherwise \Rightarrow increase the price
- Fixing FAs & VNS:
 - $\bullet\,$ Low spill value \Rightarrow associated flights have a higher probability to be fixed to their current aircraft
 - If the solution is improved more assignments are fixed and vice versa.

Data

	airporte	flights	flights per	demand per		fleet composition		
	anports	ingins	route	flight		fieet composition		
1	3	10	1.67	51.90	2	50-37		
2	3	11	2.75	83.10	2	117-50		
3	3	12	2.00	113.80	2	164-100		
4	3	12	2.00	113.80	6	164-146-128-124-107-100		
5	3	26	4.33	56.10	3	100-50-37		
6	3	19	3.17	96.70	3	164-117-72		
7	3	19	3.17	96.70	5	124-107-100-85-72		
8	3	12	3.00	193.40	3	293-195-164		
9	3	33	8.25	71.90	3	117-70-37		
10	3	32	5.33	100.50	3	164-117-85		
11	3	32	5.33	100.50	5	128-124-107-100-85		
12	2	11	5.50	173.70	3	293-164-127		
13	4	39	4.88	64.50	4	117-85-50-37		
14	4	23	3.83	86.10	4	117-85-70-50		
15	4	19	3.17	101.40	4	134-117-100-85		
16	4	19	3.17	101.40	5	128-124-107-100-85		
17	4	15	1.88	58.10	5	117-85-70-50-37		
18	4	14	2.33	87.60	5	134-117-85-70-50		
19	4	13	2.60	100.10	5	164-134-117-100-85		
20	3	33	8.25	71.90	4	85-70-50-35		
21	3	46	7.67	86.85	5	128-124-107-100-85		
22	7	48	2.29	101.94	4	124-107-100-85		
23	3	61	15.25	69.15	4	117-85-50-37		
24	8	77	2.08	67.84	4	117-85-50-37		
25	8	97	3.46	90.84	5	164-117-100-85-50		

Data instances are derived from ROADEF 2009 dataset.

Computational results

	BON	MIN	Sequential			Local search heuristic			
	Integrat	ed model		approach (SA)		Average over 5 replications			
	Profit	Time(s) max 12h	Profit	% dev from BONMIN	Time(s) max 1h	Profit	%dev from BONMIN	%imp. over SA	Time(s) max 1h
1	15,091	11	15,091	0.00%	1	15,091	0.00%	0.00%	1
2	37,335	27	35,372	-5.26%	1	37,335	0.00%	5.55%	13
3	50,149	56	50,149	0.00%	1	50,149	0.00%	0.00%	1
4	46,037	2,686	43,990	-4.45%	1	46,037	0.00%	4.66%	3
5	70,904	2,479	69,901	-1.42%	1	70,679	-0.32%	1.11%	6
6	82,311	1,493	82,311	0.00%	1	82,311	0.00%	0.00%	1
7	87,212	42,628	84,186	-3.47%	1	87,212	0.00%	3.59%	60
8	906,791	12,964	904,054	-0.30%	1	906,791	0.00%	0.30%	2
9	135,656	23,662	135,656	0.00%	2	135,656	0.00%	0.00%	2
10	115,983	209	115,983	0.00%	1	115,983	0.00%	0.00%	1
11	94,203	1,724	93,920	-0.30%	3	94,203	0.00%	0.30%	10
12	858,544	7,343	854,902	-0.42%	1	858,545	0.00%	0.43%	1
13	138,575	37,177	137,428	-0.83%	2	138,575	0.00%	0.83%	173
14	96,486	17,142	93,347	-3.25%	1	96,486	0.00%	3.36%	89
15	49,448	32	49,448	0.00%	1	49,448	0.00%	0.00%	1
16	38,205	240	37,100	-2.89%	1	38,205	0.00%	2.98%	1
17	27,076	56	27,076	0.00%	1	27,076	0.00%	0.00%	1
18	53,128	141	52,369	-1.43%	1	53,128	0.00%	1.45%	1
19	26,486	14	26,486	0.00%	1	26,486	0.00%	0.00%	1
20	146,467	31,945	146,464	-0.00%	2	147,506	0.71%	0.71%	380
21	207,434	4,848	217,169	4.69%	9	219,136	5.64%	0.91%	1,395
22	153,789	4,387	163,114	6.06%	4	163,393	6.24%	0.17%	126
23	227,364	22,174	226,615	-0.33%	34	227,284	-0.04%	0.30%	1,283
24	194,598	42,360	208,561	7.18%	19	210,395	8.12%	0.88%	791
25	463,731	31,535	469,136	1.17%	14	470,494	1.46%	0.29%	1,117

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work

Non-convexity

REV^{LS}:non-convex, no information on the quality of the solution Schön (2008) similar model (based on synthetic data, without spill)

$$ms_i = rac{\exp(V_i)}{\sum_{j \in I_s} \exp(V_j)}, \qquad V_i = \beta p_i + c_i$$

A new variable v_s :

Inverse price-demand function:

$$\upsilon_{s} = \frac{1}{\sum_{j \in I_{s}} \exp(V_{j})} \qquad \qquad p_{i} = \frac{1}{\beta} \left(\ln\left(\frac{\mathrm{ms}_{i}}{\upsilon_{s}}\right) - c_{i} \right) \\ \sum_{i \in I_{s}} \mathrm{ms}_{i} = 1 \quad d_{i} = D_{s} \mathrm{ms}_{i}$$

Revenue $(d_i p_i)$ is convex for $\beta < 0$

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
Non-co	onvexity					

Limiting for advanced demand models:

- more policy variables
 - aircraft type
 - departure time etc.

$$ms_i = v_s \exp(\beta_p p_i + \beta_t t_i + c_i)$$

- disaggregate/individual level variables
 - trip purpose
 - income level etc.

$$\begin{split} \mathbf{ms}_{i,n} &= \mathbf{v}_{s,n} \exp(\beta_p p_i + \beta_n z_n + c_i) \\ d_i &= \sum_{n \in N} \mathbf{ms}_{i,n} \end{split}$$

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
Log tra	ansformat	ion				

We propose a logarithmic transformation

$$\begin{aligned} \mathrm{ms}_i &= \mathrm{v}_s \cdot \exp\left(V_i(p_i, z_i, \beta)\right) \qquad \forall h \in H, s \in S^h, i \in I_s \\ &= \mathrm{v}_s \cdot \exp\left(\beta \ln\left(p_i\right) + c_i\right) \end{aligned}$$

$$\ln(\mathrm{ms}_{i}) = \ln(\upsilon_{s}) + \beta \ln(p_{i}) + c_{i}$$
$$\mathrm{ms}_{i}^{'} = \upsilon_{s}^{'} + \beta p_{i}^{'} + c_{i},$$

where $ms_i > 0, \upsilon_s > 0, p_i > 0$

$$\begin{aligned} \max \sum_{h \in H} \sum_{s \in S^{h}} \sum_{i \in (I_{s} \setminus I'_{s})} d_{i}p_{i} \\ \sum_{h \in H} \pi^{h}_{k,f} &= Q_{k} X_{k,f} \\ \sum_{s \in S^{h}} \sum_{i \in (I_{s} \setminus I'_{s})} \delta_{i,f} d_{i} &\leq \sum_{k \in K} \pi^{h}_{k,f} \\ d_{i} &\leq D_{s} m_{s_{i}} \\ m_{s_{i}} &= \upsilon_{s} \exp(\beta \ln(p_{i}) + c_{i}) \\ \sum_{i \in I_{s}} m_{s_{i}} &= 1 \\ \\ \pi^{h}_{k,f} &\geq 0 \\ d_{i} &\geq 0 \\ m_{s_{i}} &\geq 0 \\ LB_{i} &\leq p_{i} \leq UB_{i} \\ \upsilon_{s} &> 0 \\ \end{aligned}$$

$$\begin{aligned} \forall f \in F, k \in K \\ \forall h \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H, s \in S^{h}, i \in I_{s} \\ \forall H \in H,$$

 $\max \sum_{h \in H} \sum_{s \in S^{h}} \sum_{i \in (I_{s} \setminus I'_{s})} d'_{i} + p'_{i}$ $\sum_{h \in H} \pi^{h}_{k,f} = Q_{k} X_{k,f} \qquad \forall f \in F, k \in K$ $\sum_{s \in S^{h}} \sum_{i \in (I_{s} \setminus I'_{s})} \delta_{i,f} \exp(d'_{i}) \leq \sum_{k \in K} \pi^{h}_{k,f} \qquad \forall h \in H, f \in F^{*}$ $d'_{i} \leq \ln(D_{s}) + ms'_{i} \qquad \forall h \in H, s \in S^{h}, i \in I_{s}$ $\min'_{s} = \upsilon'_{s} + \beta p'_{i} + c_{i} \qquad \forall h \in H, s \in S^{h}, i \in I_{s}$ $\sum_{i \in I_{s}} \exp(ms'_{i}) = 1 \qquad \forall h \in H, s \in S^{h}$

$$\begin{aligned} \pi_{k,f}^{h} &\geq 0 & \forall h \in H, k \in K, f \in F \\ d'_{i} &\in \Re & \forall h \in H, s \in S^{h}, i \in I_{s} \\ ms'_{i} &\in \Re & \forall h \in H, s \in S^{h}, i \in I_{s} \\ \ln(LB_{i}) &\leq p'_{i} \leq \ln(UB_{i}) & \forall h \in H, s \in S^{h}, i \in I_{s} \\ \upsilon'_{s} &\in \Re & \forall h \in H, s \in S^{h} \end{aligned}$$

 $\max \sum \sum \sum d'_{i} + p'_{i} - \text{penalty} \cdot \text{dev}_{s,h}$ $h \in H_{s \in S^{h}} i \in (I_{s} \setminus I_{s}')$ $\sum_{h\in H} \pi^h_{k,f} = Q_k X_{k,f}$ $\forall f \in F, k \in K$ $\sum_{s \in S^h} \sum_{i \in (I_s \setminus I'_s)} \delta_{i,f} \exp(d'_i) \le \sum_{k \in K} \pi^h_{k,f}$ $\forall h \in H, f \in F^*$ $d_i' \leq \ln(D_s) + \mathrm{ms}_i'$ $\forall h \in H, s \in S^h, i \in I_s$ $ms'_{i} = v'_{s} + \beta p'_{i} + c_{i}$ $\forall h \in H, s \in S^h, i \in I_s$ $\sum_{i \in I_{c}} \exp\left(\mathrm{ms}_{i}^{'}\right) \leq 1$ $\forall h \in H, s \in S^h$ $\operatorname{dev}_{s,h} \ge (1 - \sum_{i \in I} \exp(\operatorname{ms}'_i))^2$ $\forall h \in H, s \in S^h$ $\pi_{kf}^h \geq 0$ $\forall h \in H, k \in K, f \in F$ $d'_i \in \mathfrak{R}$ $\forall h \in H, s \in S^h, i \in I_s$ $ms'_i \in \mathfrak{R}$ $\forall h \in H, s \in S^h, i \in I_s$ $\ln(LB_i) < p'_i < \ln(UB_i)$ $\forall h \in H, s \in S^h, i \in I_s$ $\upsilon'_{s} \in \mathfrak{R}$ $\forall h \in H. s \in S^h$

Can be solved with NLP solvers like MOSEK

 $\max \sum \sum \sum d'_i + p'_i - \text{penalty} \cdot \text{dev}_{s,h}$ $h \in H$ $s \in S^h$ $i \in (I_s \setminus I'_s)$ $\sum_{h\in H} \pi^h_{k,f} = Q_k X_{k,f}$ $\forall f \in F, k \in K$ $\sum_{s \in S^h} \sum_{i \in (I_s \setminus I'_s)} \delta_{i,f} \exp(d'_i) \le \sum_{k \in K} \pi^h_{k,f}$ $\forall h \in H, f \in F^*$ $d_i^{\prime} \leq \ln(D_s) + \mathrm{ms}_i^{\prime}$ $\forall h \in H, s \in S^h, i \in I_s$ $ms'_{i} = v'_{s} + \beta p'_{i} + c_{i}$ $\forall h \in H, s \in S^h, i \in I_s$ $\sum_{i \in I_{c}} \exp\left(\mathrm{ms}_{i}^{'}\right) \leq 1$ $\forall h \in H, s \in S^h$ $\operatorname{dev}_{s,h} \ge (1 - \sum_{i \in I} \exp(\operatorname{ms}'_i))^2$ $\forall h \in H, s \in S^h$ $\pi_{kf}^h \geq 0$ $\forall h \in H, k \in K, f \in F$ $d'_i \in \mathfrak{R}$ $\forall h \in H, s \in S^h, i \in I_s$ $ms'_i \in \mathfrak{R}$ $\forall h \in H, s \in S^h, i \in I_s$ $\ln(LB_i) \le p'_i \le \ln(UB_i)$ $\forall h \in H, s \in S^h, i \in I_s$ $\upsilon'_{c} \in \mathfrak{R}$ $\forall h \in H, s \in S^h$

Can be solved with NLP solvers like MOSEK Similarly, $ms_i = \exp(ms'_i)$ could be defined and penalized

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
What	about spil	?				

Wang, Shebalov and Klabjan 2012, working paper on spill and recapture

- Spill and recapture based on attractiveness
- Attractiveness is fixed, no explicit demand model

Introduction	Demand model 0000	Integrated model	Heuristic	Results	Transformation	On-going work
What a	about spil	?				

Wang, Shebalov and Klabjan 2012, working paper on spill and recapture

- Spill and recapture based on attractiveness
- Attractiveness is fixed, no explicit demand model

•
$$ms_i \leq \frac{\exp(V_i)}{\exp(V_0)}ms_0$$
,
itinerary 0: no-revenue/competing itineraries of segment s
• $\sum_{i \in I_s} ms_i + ms_0 = 1$
 \Rightarrow spill is allowed

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
What a	about spil	?				

Wang, Shebalov and Klabjan 2012, working paper on spill and recapture

- Spill and recapture based on attractiveness
- Attractiveness is fixed, no explicit demand model

•
$$ms_i \leq \frac{\exp(V_i)}{\exp(V_0)}ms_0$$
,
itinerary 0: no-revenue/competing itineraries of segment s
• $\sum_{i \in I_s} ms_i + ms_0 = 1$
 \Rightarrow spill is allowed

Log transformation is applicable to the new formulation as well.

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
GBD	framework					

Li and Sun (2006) Mixed Integer Nonlinear Programming

- Initial FAM solution $(x_{k,f})$, selection of flights
- Repeat until UB \leq LB + allowed gap
 - Solve REV subproblem which is a convex NLP and obtain...
 - Price, market share, allocated seats $(p'_i, ms'_i, \pi^h_{k,f})$
 - Lagrangian multipliers \Rightarrow Benders cuts
 - \Rightarrow Information on the potential revenue with capacity change
 - A lower bound (LB) for the problem
 - Solve the FAM master problem (with the cuts) which is a MILP and obtain...
 - An updated FAM solution $(x_{k,f})$
 - $\bullet\,$ An upper bound (UB) for the problem

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
Conclu	isions					

- The integrated model has promising results
- ... which motivates the effort in devising solution methodologies
- Logarithmic transformation provides a convex formulation
- ... which is flexible for the integration of advanced demand models
- The model is flexible to include the spill and recapture effects

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
On-goi	ng work					

- The GBD will be tested
- Or other bi-level programming tools
- When finalized...
- ... a complete framework for the integration of explicit supply-demand interactions in optimization models
 - scheduling, fleeting, pricing
 - spill and recapture
 - appropriate and flexible solution method

Demand model

Integrated model

Heuristic

Results

Transformation

On-going work

Thank you for your attention!

Demand model

Integrated model

Heuristic

Results

Transformation

On-going work

• Value of time (VOT):

$$VOT_{i} = \frac{\partial V_{i} / \partial time_{i}}{\partial V_{i} / \partial cost_{i}}$$
$$= \frac{\beta_{time} \cdot cost_{i}}{\beta_{cost}}$$

For the same OD pair...

- VOT for economy, non-stop: 8 ${\in}/{\rm hour}$
- VOT for economy, one-stop: 19.8, 11, 9.2 ${\in}/{\rm hour}$
- VOT for business, non-stop: 21.7 €/hour

Demand model

Integrated model

Heuristic

Results

Transformation

On-going work

Improvement due to the local search

	Sequential approach (SA)	Rar neight	ndom Dorhood	Neighborhood based on spill		% Improvement	
	Profit	Profit	Time(sec)	Profit	Time(sec)	Quality of the solution	Reduction in time
2	35,372	37,335	116	37,335	13	-	89.10%
4	43,990	44,302	27	46,037	3	3.92%	88.88%
5	69,901	No imp	over SA	70,679	6	1.11%	-
7	84,186	85,335	1,649	87,212	60	2.20%	96.36%
8	904,054	906,791	209	906,791	2	-	99.04%
11	93,920	No imp	over SA	94,203	10	0.30%	-
12	854,902	No imp	over SA	858,545	1	0.43%	-
13	137,428	No imp	over SA	138,575	173	0.83%	-
14	93,347	96,365	943	96,486	89	0.13%	90.56%
16	37,100	38,205	6	38,205	1	-	80.65%
18	52,369	53,128	334	53,128	1	-	99.80%
20	146,464	No imp	over SA	147,506	380	0.71%	-
21	217,169	No imp	over SA	219,136	1,395	0.91%	-
22	163,114	No imp	over SA	163,393	126	0.17%	-
23	226,615	No imp	over SA	227,284	1,283	0.30%	-
24	208,561	No imp	over SA	210,395	791	0.88%	-
25	469,136	No imp	over SA	470,494	1,117	0.29%	-

Introduction	Demand model	Integrated model	Heuristic	Results	Transformation	On-going work
A sma	ll example					

- 2 airports CDG-MRS
- 4 flights all are mandatory
- 2 aircraft types: 37-50 seats

We start with an initial FAM solution:

	AC1	AC2
F1	Х	
F2	Х	
F3	Х	
F4	Х	

Demand model 0000 Integrated model

Heuristic

 \implies

Results

Transformation

On-going work

A small example - GBD iterations

Iteration 1		
	Sub	Master
	12522.8	16923.4
	LB	UB
	12522.8	16923.4
	AC1	AC2
F1		Х
F2		Х
F3		х
F4		Х

Г	Iteration 2		
L			
		Sub	Master
		10734.4	14822.8
		LB	UB
		12522.8	14822.8
		AC1	AC2
	F1		Х
	F2		Х
	F3	Х	
	F4	Х	

Iteration 3		
	Sub	Master
	12696.8	14822.8
	LB	UB
	12696.8	14822.8
	AC1	AC2
F1	X	
F2		Х
F3		х
F4	X	

Iteration 4		
	Sub	Master
	12474.4	12696.8
	LB	UB
	12696.8	12696.8
	AC1	AC2
F1		Х
F2		Х
F3	Х	
F4	Х	

 \implies