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Motivation

Demand
responsiveness

Flexible decision
support tools

Flexible capacity

Flexibility in air
transportation

new technologies
supply-demand

interactions
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New technology: Clip-Air

Flexible capacity

Modular-detachable
capsules

Wing and capsule
separation

Multi-modality

Passenger and cargo

Sustainability

Gas emissions
Noise
Accident rates
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Clip-Air: Flexible capacity

A fleet (wing & capsule) assignment model with spill and recapture

Clip-Air better utilizes the capacity

More passengers ...
... with less allocated capacity

Clip-Air deals better with the insufficient capacity

Results are robust to the cost values of Clip-Air

Atasoy, B., Salani, M., Bierlaire, M., and Leonardi, C. (to appear in
2013 April). Impact analysis of a flexible air transportation system,
European Journal of Transport and Infrastructure Research 13(2).
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Today’s talk

Advance supply-demand interactions

Itinerary choice model
Integration into the planning model

Solution methods for the integrated model

A local search heuristic
Log transformation of the logit model
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Itinerary choice model

Market segments, s, defined by the class and each OD pair

Itinerary choice among the set of alternatives, Is , for each segment s

For each itinerary i ∈ Is the utility is defined by:

Vi = ASCi + βp · ln(pi ) + βtime · timei + βmorning ·morningi

Vi = Vi (pi ,zi ,β)

- ASCi : alternative specific constant
- p is the only policy variable and included as log
- p and time are interacted with non-stop/stop
- morning is 1 if the itinerary is a morning itinerary

No-revenue represented by the subset I
′
s ∈ Is for segment s.
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Itinerary choice model

Market share and demand for itinerary i in market segment s:

msi =
exp(Vi (pi ,zi ,β))

∑
j∈Is

exp(Vj (pj ,zj ,β))
⇒ di = Dsmsi

- Ds is the total expected demand for market segment s.

Spill and recapture effects: Capacity shortage ⇒ passengers may
be recaptured by other itineraries (instead of their desired itineraries)

Recapture ratio is given by:

bi ,j =
exp(Vj (pj ,zj ,β))

∑
k∈Is\{i}

exp(Vk (pk ,zk ,β))
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Estimation

Revealed preferences (RP) data: Booking data from a major
European airline

Lack of variability
Price inelastic demand

RP data is combined with a stated preferences (SP) data

Time, cost and morning parameters are fixed to be the same for the
two datasets.

A scale parameter is introduced for SP to capture the differences in
variance.

Further details in Atasoy, B., and Bierlaire, M. (2012). An air itinerary choice model based on

a mixed RP/SP dataset. Technical report TRANSP-OR 120426. Transport and Mobility

Laboratory, ENAC, EPFL.
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Estimation results

βfare βtime

non-stop one-stop non-stop one-stop βmorning

economy -2.23 -2.17 -0.102 -0.0762 0.0283
business -1.97 -1.97 -0.104 -0.0821 0.079

Price elasticity of demand:

E Pi
pricei

=
∂Pi

∂pricei
· pricei

Pi

An example
for a non-stop itinerary

price elasticity for economy is −2.03 and -1.86 for business
for a one-stop itinerary

price elasticity for economy is −2.14 and -1.95 for business
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Integrated airline scheduling, fleeting and pricing

Schedule  
planning 

Revenue 
management 

 
Schedule design 
• Mandatory flights 
• Optional flights 

Fleet assignment 

Pricing-demand 
Spill-recapture 

Capacity allocation 
• Business seats 
• Economy seats 

Aim: to take better fleeting decisions with the information provided by the
demand model
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Integrated airline scheduling, fleeting and pricing

Decision variables:

xk,f : binary, assignment of aircraft k to flight f

πh
k,f : allocated seats for class h on flight f aircraft k

pi : price of itinerary i

di : demand of itinerary i

ti ,j : spilled passengers from itinerary i to j
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Integrated model - Scheduling & fleeting

Max ∑
h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

(di − ∑
j∈Is

ti ,j + ∑

j∈(Is \I
′
s )

tj ,i bj ,i )pi − ∑
k∈K
f ∈F

Ck,f xk,f : revenue - cost (1)

s.t. ∑
k∈K

xk,f = 1: mandatory flights ∀f ∈ F M (2)

∑
k∈K

xk,f ≤ 1: optional flights ∀f ∈ F O (3)

yk,a,t− + ∑
f ∈In(k,a,t)

xk,f = yk,a,t+ + ∑
f ∈Out(k,a,t)

xk,f : flow conservation ∀[k,a,t] ∈N (4)

∑
a∈A

y
k,a,minE−a

+ ∑
f ∈CT

xk,f ≤ Rk : fleet availability ∀k ∈ K (5)

y
k,a,minE−a

= y
k,a,maxE+

a
: cyclic schedule ∀k ∈ K ,a ∈ A (6)

∑
h∈H

π
h
k,f = Qk xk,f : seat capacity ∀f ∈ F ,k ∈ K (7)

xk,f ∈ {0,1} ∀k ∈ K , f ∈ F (8)

yk,a,t ≥ 0 ∀[k,a,t] ∈N (9)

Itinerary-based fleet assignment & Spill and recapture
Lohatepanont and Barnhart 2004
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Integrated model - Revenue management - Pricing

∑
s∈Sh

∑
i∈(Is \I

′
s )

δi ,f (di − ∑
j∈Is

ti ,j + ∑
j∈(Is \I

′
s )

tj ,i bj ,i )≤ ∑
k∈K

π
h
k,f : demand-capacity ∀h ∈H, f ∈ F (10)

∑
j∈Is

ti ,j ≤ di : total spill ∀h ∈H,s ∈ Sh , i ∈ (Is \ I
′
s ) (11)

d̃i = Ds
exp(Vi (pi ,zi ,β))

∑
j∈Is

exp(Vj (pj ,zj ,β))
: logit demand ∀h ∈H,s ∈ Sh , i ∈ Is (12)

bi ,j =
exp(Vj (pj ,zj ,β))

∑
k∈Is \{i}

exp(Vk (pk ,zk ,β))
: recapture ratio ∀h ∈H,s ∈ Sh , i ∈ (Is \ I

′
s ), j ∈ Is (13)

di ≤ d̃i : realized demand ∀h ∈H,s ∈ Sh , i ∈ Is (14)

LBi ≤ pi ≤ UBi : bounds on price ∀h ∈H,s ∈ Sh , i ∈ Is (15)

ti ,j ,bi ,j ≥ 0 ∀h ∈H,s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (16)

π
h
k,f ≥ 0 ∀h ∈H,k ∈ K , f ∈ F (17)

Schön (2008): integration of pricing
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Heuristic method

Mixed Integer Non-convex Problem

BONMIN solver (Bonami et al. 2008) is able to converge on
instances with about 35 flights.

We devised a heuristic procedure based on two subproblems:

FAMLS : price-inelastic schedule planning model ⇒ MILP

Prices fixed
Optimizes the schedule design and fleet assignment

REVLS : Revenue management with fixed capacity ⇒ NLP

Schedule design and fleet assignment fixed
Optimizes the revenue
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Procedure

Require: Average prices from the data
Solve FAMLS with given price, obtain initial FA solution
Solve REVLS with the initial FA solution
repeat

Price sampling: Obtain new prices based on spill
New market share and recapture ratios with the new prices
VNS -Fixing: Fix a subset of the FAs based on spill
Solve FAMLS with the sampled price, market share, recapture ratios and fixed
assignments
Solve REVLS with fixed capacity
if Profit improved then

Update best profit
VNS - Intensification: fix more FAs

else if No improvement in the profit for the last 3 iterations then
VNS - Diversification: Fix less FAs

end if
until time≥ timemax
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Local search based on spill

Neighborhood solutions are visited based on the spill rather than a
fully random search

Price sampling:

A random price is drawn for each itinerary
If the spilled passengers are higher than the average ⇒ decrease the
price
Otherwise ⇒ increase the price

Fixing FAs & VNS:

Low spill value ⇒ associated flights have a higher probability to be
fixed to their current aircraft
If the solution is improved more assignments are fixed and vice versa.
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Data

no airports flights
flights per
route

demand per
flight

fleet composition

1 3 10 1.67 51.90 2 50-37
2 3 11 2.75 83.10 2 117-50
3 3 12 2.00 113.80 2 164-100
4 3 12 2.00 113.80 6 164-146-128-124-107-100
5 3 26 4.33 56.10 3 100-50-37
6 3 19 3.17 96.70 3 164-117-72
7 3 19 3.17 96.70 5 124-107-100-85-72
8 3 12 3.00 193.40 3 293-195-164
9 3 33 8.25 71.90 3 117-70-37

10 3 32 5.33 100.50 3 164-117-85
11 3 32 5.33 100.50 5 128-124-107-100-85
12 2 11 5.50 173.70 3 293-164-127
13 4 39 4.88 64.50 4 117-85-50-37
14 4 23 3.83 86.10 4 117-85-70-50
15 4 19 3.17 101.40 4 134-117-100-85
16 4 19 3.17 101.40 5 128-124-107-100-85
17 4 15 1.88 58.10 5 117-85-70-50-37
18 4 14 2.33 87.60 5 134-117-85-70-50
19 4 13 2.60 100.10 5 164-134-117-100-85

20 3 33 8.25 71.90 4 85-70-50-35
21 3 46 7.67 86.85 5 128-124-107-100-85
22 7 48 2.29 101.94 4 124-107-100-85
23 3 61 15.25 69.15 4 117-85-50-37
24 8 77 2.08 67.84 4 117-85-50-37
25 8 97 3.46 90.84 5 164-117-100-85-50

Data instances are derived from ROADEF 2009 dataset.



Computational results

BONMIN Sequential Local search heuristic
Integrated model approach (SA) Average over 5 replications

Profit
Time(s)

Profit
% dev from Time(s)

Profit
%dev from %imp. Time(s)

max 12h BONMIN max 1h BONMIN over SA max 1h
1 15,091 11 15,091 0.00% 1 15,091 0.00% 0.00% 1
2 37,335 27 35,372 -5.26% 1 37,335 0.00% 5.55% 13
3 50,149 56 50,149 0.00% 1 50,149 0.00% 0.00% 1
4 46,037 2,686 43,990 -4.45% 1 46,037 0.00% 4.66% 3
5 70,904 2,479 69,901 -1.42% 1 70,679 -0.32% 1.11% 6
6 82,311 1,493 82,311 0.00% 1 82,311 0.00% 0.00% 1
7 87,212 42,628 84,186 -3.47% 1 87,212 0.00% 3.59% 60
8 906,791 12,964 904,054 -0.30% 1 906,791 0.00% 0.30% 2
9 135,656 23,662 135,656 0.00% 2 135,656 0.00% 0.00% 2

10 115,983 209 115,983 0.00% 1 115,983 0.00% 0.00% 1
11 94,203 1,724 93,920 -0.30% 3 94,203 0.00% 0.30% 10
12 858,544 7,343 854,902 -0.42% 1 858,545 0.00% 0.43% 1
13 138,575 37,177 137,428 -0.83% 2 138,575 0.00% 0.83% 173
14 96,486 17,142 93,347 -3.25% 1 96,486 0.00% 3.36% 89
15 49,448 32 49,448 0.00% 1 49,448 0.00% 0.00% 1
16 38,205 240 37,100 -2.89% 1 38,205 0.00% 2.98% 1
17 27,076 56 27,076 0.00% 1 27,076 0.00% 0.00% 1
18 53,128 141 52,369 -1.43% 1 53,128 0.00% 1.45% 1
19 26,486 14 26,486 0.00% 1 26,486 0.00% 0.00% 1

20 146,467 31,945 146,464 -0.00% 2 147,506 0.71% 0.71% 380
21 207,434 4,848 217,169 4.69% 9 219,136 5.64% 0.91% 1,395
22 153,789 4,387 163,114 6.06% 4 163,393 6.24% 0.17% 126
23 227,364 22,174 226,615 -0.33% 34 227,284 -0.04% 0.30% 1,283
24 194,598 42,360 208,561 7.18% 19 210,395 8.12% 0.88% 791
25 463,731 31,535 469,136 1.17% 14 470,494 1.46% 0.29% 1,117
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Non-convexity

REVLS :non-convex, no information on the quality of the solution
Schön (2008) similar model (based on synthetic data, without spill)

msi =
exp(Vi )

∑
j∈Is

exp(Vj )
, Vi = βpi + ci

A new variable υs :

υs =
1

∑
j∈Is

exp(Vj )

msi = υs exp(βpi + ci )

Inverse price-demand function:

pi =
1

β
(ln(

msi

υs
)− ci )

∑
i∈Is

msi = 1 di = Dsmsi

Revenue (di pi ) is convex for β < 0
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Non-convexity

Limiting for advanced demand models:

more policy variables

aircraft type
departure time etc.

msi = υs exp(βppi + βtti + ci )

disaggregate/individual level variables

trip purpose
income level etc.

msi ,n = υs,n exp(βppi + βnzn + ci )

di = ∑
n∈N

msi ,n
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Log transformation

We propose a logarithmic transformation

msi = υs · exp(Vi (pi ,zi ,β)) ∀h ∈ H,s ∈ Sh, i ∈ Is

= υs · exp(β ln(pi ) + ci )

ln(msi ) = ln(υs) + β ln(pi ) + ci

ms
′
i = υ

′
s + βp

′
i + ci ,

where msi > 0,υs > 0,pi > 0
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Transformed revenue model - FAs fixed, no spill

max ∑
h∈H

∑
s∈Sh

∑
i∈(Is\I ′s )

di pi

∑
h∈H

π
h
k,f = Qk Xk,f ∀f ∈ F ,k ∈ K

∑
s∈Sh

∑
i∈(Is\I

′
s )

δi ,f di ≤ ∑
k∈K

π
h
k,f ∀h ∈H, f ∈ F

di ≤Dsmsi ∀h ∈H,s ∈ Sh, i ∈ Is

msi = υs exp(β ln(pi ) + ci ) ∀h ∈H,s ∈ Sh, i ∈ Is

∑
i∈Is

msi = 1 ∀h ∈H,s ∈ Sh

π
h
k,f ≥ 0 ∀h ∈H,k ∈ K , f ∈ F

di ≥ 0 ∀h ∈H,s ∈ Sh, i ∈ Is

msi ≥ 0 ∀h ∈H,s ∈ Sh, i ∈ Is

LBi ≤ pi ≤ UBi ∀h ∈H,s ∈ Sh, i ∈ Is

υs ≥ 0 ∀h ∈H,s ∈ Sh

Can be solved with NLP solvers like MOSEK

Similarly, msi = exp(ms
′
i ) could be defined and penalized
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d
′
i + p

′
i

∑
h∈H

π
h
k,f = Qk Xk,f ∀f ∈ F ,k ∈ K
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s∈Sh
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i∈(Is\I

′
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′
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k∈K

π
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d
′
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′
i + ci ∀h ∈H,s ∈ Sh, i ∈ Is

∑
i∈Is
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′
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′
i + p

′
i − penalty · devs,h
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π
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s∈Sh

∑
i∈(Is\I

′
s )

δi ,f exp(d
′
i )≤ ∑

k∈K

π
h
k,f ∀h ∈H, f ∈ F ∗

d
′
i ≤ ln(Ds ) +ms

′
i ∀h ∈H,s ∈ Sh, i ∈ Is

ms
′
i = υ

′
s + βp

′
i + ci ∀h ∈H,s ∈ Sh, i ∈ Is

∑
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′
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i∈Is

exp(ms
′
i ))2 ∀h ∈H,s ∈ Sh

π
h
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What about spill?

Wang, Shebalov and Klabjan 2012, working paper on spill and recapture

Spill and recapture based on attractiveness
Attractiveness is fixed, no explicit demand model

msi ≤
exp(Vi )

exp(V0)
ms0,

itinerary 0: no-revenue/competing itineraries of segment s

∑
i∈Is

msi +ms0 = 1

⇒ spill is allowed

Log transformation is applicable to the new formulation as well.
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GBD framework

Li and Sun (2006) Mixed Integer Nonlinear Programming

Initial FAM solution (xk,f ), selection of flights

Repeat until UB ≤ LB + allowed gap
Solve REV subproblem which is a convex NLP and obtain...

Price, market share, allocated seats (p
′

i , ms
′

i , πh
k,f )

Lagrangian multipliers ⇒ Benders cuts
⇒ Information on the potential revenue with capacity change

A lower bound (LB) for the problem

Solve the FAM master problem (with the cuts) which is a MILP and
obtain...

An updated FAM solution (xk,f )
An upper bound (UB) for the problem
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Conclusions

The integrated model has promising results

... which motivates the effort in devising solution methodologies

Logarithmic transformation provides a convex formulation

... which is flexible for the integration of advanced demand models

The model is flexible to include the spill and recapture effects
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On-going work

The GBD will be tested

Or other bi-level programming tools

When finalized...

... a complete framework for the integration of explicit
supply-demand interactions in optimization models

scheduling, fleeting, pricing
spill and recapture
appropriate and flexible solution method
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Thank you for your attention!
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Value of time (VOT):

VOTi =
∂Vi/∂timei

∂Vi/∂costi

=
βtime · costi

βcost

For the same OD pair...

VOT for economy, non-stop: 8 e/hour
VOT for economy, one-stop: 19.8, 11, 9.2 e/hour
VOT for business, non-stop: 21.7 e/hour
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Improvement due to the local search

Sequential Random Neighborhood
% Improvement

approach (SA) neighborhood based on spill

Profit Profit Time(sec) Profit Time(sec)
Quality of Reduction

the solution in time
2 35,372 37,335 116 37,335 13 - 89.10%
4 43,990 44,302 27 46,037 3 3.92% 88.88%
5 69,901 No imp. over SA 70,679 6 1.11% -
7 84,186 85,335 1,649 87,212 60 2.20% 96.36%
8 904,054 906,791 209 906,791 2 - 99.04%

11 93,920 No imp. over SA 94,203 10 0.30% -
12 854,902 No imp. over SA 858,545 1 0.43% -
13 137,428 No imp. over SA 138,575 173 0.83% -
14 93,347 96,365 943 96,486 89 0.13% 90.56%
16 37,100 38,205 6 38,205 1 - 80.65%
18 52,369 53,128 334 53,128 1 - 99.80%

20 146,464 No imp. over SA 147,506 380 0.71% -
21 217,169 No imp. over SA 219,136 1,395 0.91% -
22 163,114 No imp. over SA 163,393 126 0.17% -
23 226,615 No imp. over SA 227,284 1,283 0.30% -
24 208,561 No imp. over SA 210,395 791 0.88% -
25 469,136 No imp. over SA 470,494 1,117 0.29% -
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A small example

2 airports CDG-MRS

4 flights - all are mandatory

2 aircraft types: 37-50 seats

We start with an initial FAM solution:

AC1 AC2
F1 X
F2 X
F3 X
F4 X
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A small example - GBD iterations

Iteration 1 Iteration 2
Sub Master Sub Master

12522.8 16923.4 10734.4 14822.8
LB UB LB UB

12522.8 16923.4 =⇒ 12522.8 14822.8
AC1 AC2 AC1 AC2

F1 X F1 X
F2 X F2 X
F3 X F3 X
F4 X F4 X

Iteration 3 Iteration 4
Sub Master Sub Master

12696.8 14822.8 12474.4 12696.8
LB UB LB UB

12696.8 14822.8 =⇒ 12696.8 12696.8
AC1 AC2 AC1 AC2

F1 X F1 X
F2 X F2 X
F3 X F3 X
F4 X F4 X
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