A holistic decision making framework for vehicle sharing systems (...and evaluation of demand forecasting)

Selin Ataç, Nikola Obrenović, Michel Bierlaire

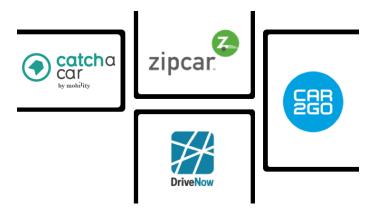
Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

September 8, 2019

Outline

Framework

- The value of demand forecasting
- 6 Conclusion and future work


▲ 西部

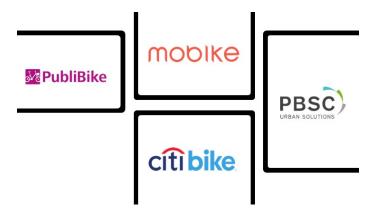
What is a Vehicle Sharing System (VSS)?

A VSS enables users to use the available vehicles generally for short period of time by an RFID card or smart phone application identification.

- Various system configurations
 - One-way or return trip
 - Station-based or free-floating
 - Dynamic or fixed pricing
 - ...

Car-sharing companies

SA,NO,MB (TRANSP-OR/EPFL)


MADEISD/ADBIS 2019

September 8, 2019 4 / 23

- 34

(a)

Bike-sharing companies

SA,NO,MB (TRANSP-OR/EPFL)

MADEISD/ADBIS 2019

September 8, 2019 5 / 23

3

< □ > < 同 > < 回 > < 回 > < 回 >

Imbalance in the network

- Bicycle-sharing systems (BSSs)
 - Capacitated traveling salesman problem (TSP) (*Pal and Zhang et al., 2017*)
 - Vehicle routing problem (VRP) with commodity flow conservation constraints (*Ghosh et al., 2016*)
 - VRP with previously clustered stations (Liu et al., 2016)
- Car-sharing systems (CSSs)
 - Multi-TSP (Nourinejad et al., 2015)
 - Mixed Integer Linear Programming (MILP) models (*Boyaci et al., 2017*)
 - Importance of the relation between demand forecasting and rebalancing (*Jorge and Correia, 2013*)
 - Denial of the requests in the case of high demand (Boyaci et al., 2017)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Demand estimation

BSSs

- Meteorology Similarity Weighed K-Nearest-Neighbor model for station bike pick-up demand prediction (*Liu et al., 2016*)
- Simulating the demand with a Poisson process (Ghosh et al., 2016)
- Worst-case demand, which maximizes demand loss (Ghosh et al., 2016)
- CSSs
 - Forecasting OD pairs between zones with two methods (*Müller and Bogenberger, 2015*):
 - AutoRegressive Integrated Moving Average (ARIMA)
 - Holt-Winter's method

Pricing

BSSs

- Prices are assigned dynamically depending on the occupancy at the destination station. (*Chemla et al., 2013, Waserhole, 2013*)
- Incentives are linearly dependent on the additional travel time. (*Pfrommer et al., 2014*)
- Dynamic pricing improved the level of service for the weekends. (*Pfrommer et al., 2014*)
- CSSs
 - Incentives on pricing which encourages users to do trips which reduces the imbalance of the network. (*Jorge and Correia, 2013*)
 - Balance of the system is improved, but less demand is served. (*Jorge and Correia, 2013*)

< □ > < 同 > < 回 > < 回 > < 回 >

Big picture

• Shared mobility systems: an updated survey by Laporte et al., (2018)

- Two dimensional classification
 - Type of the problem
 - Decision level
- Lack of research in some specific areas
 - Pricing incentives and rebalancing at strategic level
 - Locating stations in tactical level
- This work aims to provide a holistic solution approach for the VSSs.
 - From decision maker point of view
 - Three dimensional classification
 - Decision levels: Strategic, Tactical, and Operational
 - Actors: Supply and Demand
 - Layers: Data, Models, and Actions
 - Relations between the components

Strategic level

- Corresponds to long-term decisions
 - What kind of system are we dealing with?
 - How is the scope defined?
- Planning horizon
 - More than a year

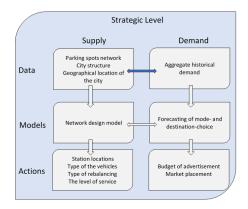


Figure: General framework - strategic level

SA,NO,MB (TRANSP-OR/EPFL)

MADEISD/ADBIS 2019

September 8, 2019

(a)

10/23

Tactical level

- Corresponds to mid-term decisions
 - How do we utilize the strategic level decisions?
 - Which decisions should we pass to the operational level?
- Planning horizon
 - 4-6 months

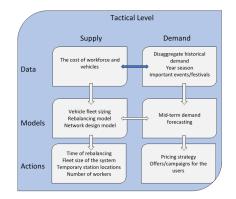


Figure: General framework - tactical level

SA,NO,MB (TRANSP-OR/EPFL)

MADEISD/ADBIS 2019

September 8, 2019

(a)

11/23

Operational level

- Corresponds to short-term decisions
 - What is the current situation of the system?
 - What do we do next time step?
- Planning horizon
 - Daily/hourly

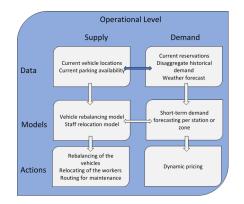


Figure: General framework - operational level

SA,NO,MB (TRANSP-OR/EPFL)

MADEISD/ADBIS 2019

September 8, 2019

(a)

12/23

Big picture - revisited

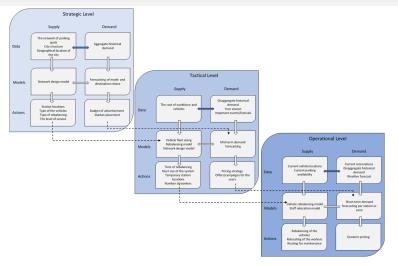


Figure: General framework and inter-relations

SA,NO,MB (TRANSP-OR/EPFL)

MADEISD/ADBIS 2019

September 8, 2019

13/23

イロト 不得 トイヨト イヨト 二日

Derived questions

- Demand forecasting is given a large attention,...
- ...but what about the added value from constructing a demand model?

- The literature consists of works on BSSs and CSSs.
- New types of vehicles are being introduced in VSSs.
- However, some of the approaches are inapplicable for the new types of vehicles.

The idea

- A discrete event simulation models the system demand throughout the day.
- The vehicle distribution at the end of the day is obtained from the simulation and passed to the optimization model.
- The mathematical model solves the rebalancing problem given a desired initial state for the next day.
- Two cases are investigated:
 - Known demand: the model knows a perfect demand forecast for the next day. The rebalancing is done according to this information.
 - Unknown demand: the system is rebalanced to the same initial state every day.
- The main idea is to compare the trade-off between the lost demand and rebalancing costs, between the two cases.

Setting the scene

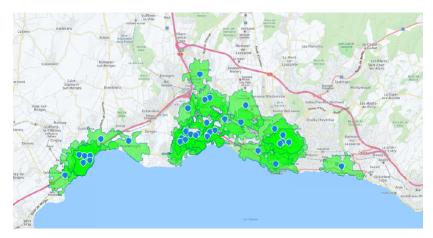
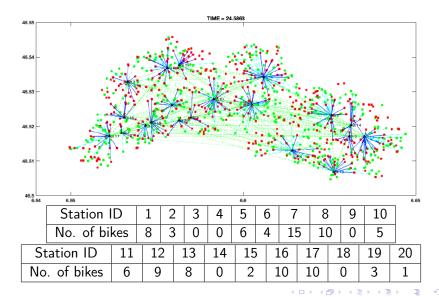


Figure: PubliBike stations and corresponding isoline polygons

SA,NO,MB (TRANSP-OR/EPFL)


MADEISD/ADBIS 2019

September 8, 2019

16/23

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Trips simulation

SA,NO,MB (TRANSP-OR/EPFL)

Preliminary findings

Dav	Unknown demand		Forecasted demand		Total
Day	Lost dem.	Reb. cost	Lost dem.	Reb. cost	requests
1	172	18681	181	16538	469
2	186	16236	171	16206	477
3	174	16206	165	16264	457
4	172	15938	153	15938	482
5	173	15614	164	15484	482
6	178	15932	169	15932	494
7	172	15484	162	15484	490
8	172	16888	165	16187	499
9	173	15932	162	15932	474
10	163	15614	163	15614	465

SA,NO,MB (TRANSP-OR/EPFL)

September 8, 2019

(a)

18/23

Conclusion and future work

- A general framework for VSSs is presented.
- Inter- and intra-relations between framework components are discussed.
- We focused on the evaluation of value of demand modeling and presented preliminary results.

- Different scenarios such as in the case of events will be evaluated.
- Different configurations of VSSs will be analyzed.
- An application will be done on newly introduced LEVs.

An application to Light Electric Vehicles (LEVs)

• A new type of vehicles

- You don't need a car driving license
- You can ride on bicycle lane
- You are protected from bad weather
- There's a room for luggage
- Free-floating parking

- The system is available to a higher portion of the population.
- Conventional rebalancing ideas should be adapted.
- Free-floating structure is not widely studied.

nikola.obrenovic@uns.ac.rs

SA,NO,MB (TRANSP-OR/EPFL)

MADEISD/ADBIS 2019

September 8, 2019

▲ 西部

→

3

21/23

References I

- G. Laporte, F. Meunier, and R. Woler Calvo, "Shared mobility systems," 4OR, vol. 13, pp. 341-360, Dec 2015.
- G. Laporte, F. Meunier, and R.Woler Calvo, "Shared mobility systems: an updated survey," Annals of Operations Research, vol. 271, pp. 105-126, Dec 2018.
- S. Ghosh, M. Trick, and P. Varakantham, "Robust repositioning to counter unpredictable demand in bike sharing systems," 2016.
- J. Müller, and K. Bogenberger. "Time series analysis of booking data of a free-floating Carsharing system in Berlin." Transportation Research Procedia 10, pp. 345-354, 2015
- J. Liu, L. Sun, W. Chen, and H. Xiong, "Rebalancing bike sharing systems: A multi-source data smart optimization," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, (New York, NY, USA), pp. 1005-1014, ACM, 2016.
- A. Pal and Y. Zhang, "Free-floating bike sharing: Solving real-life large-scale static rebalancing problems," Transportation Research Part C: Emerging Technologies, vol. 80, pp. 92-116, 2017.
- M. Nourinejad, S. Zhu, S. Bahrami, and M. J. Roorda, "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, vol. 81, pp. 98-113, 2015.

References II

- B. Boyaci, K. G. Zografos, and N. Geroliminis, "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, vol. 95, pp. 214-237, 2017.
- D. Jorge and G. Correia, "Carsharing systems demand estimation and defined operations: a literature review," European Journal of Transport and Infrastructure Research, vol. 13, no. 3, 2013.
- B. Boyaci, K. G. Zografos, and N. Geroliminis, "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, vol. 240, no. 3, pp. 718-733, 2015.
- D. Chemla, F. Meunier, T. Pradeau, R. W. Calvo, and H. Yahiaoui, "Self-service bike sharing systems: simulation, repositioning, pricing," 2013.
- A. Waserhole, Vehicle sharing systems pricing optimization. PhD thesis, Universite de Grenoble, 2013.
- A. Waserhole and V. Jost, "Vehicle sharing system pricing regulation: A fluid approximation. 2013," URL http://hal.archives-ouvertes.fr/hal-00727041.
- J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari, "Dynamic vehicle redistribution and online price incentives in shared mobility systems," IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 4, pp. 1567-1578, 2014.
- "How it works.." https://www.enuu.ch. [Online; accessed 25-February-2019].