Synthetic Population Projections and Unforeseen Events: Hybrid Simulator for Capturing Dynamics

Marija Kukic Michel Bierlaire

05 February, 2024

EPFL

Outline

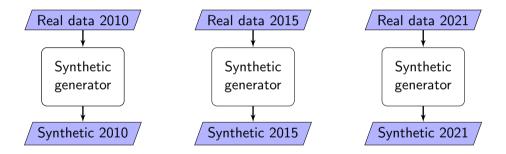
Motivation

2 Literature review

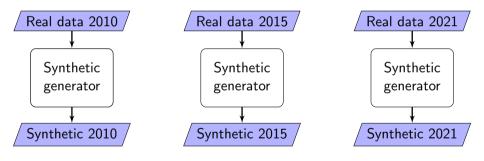
3 Contribution

- 5 Results: Case study of Switzerland
- 6 Conclusion and Future Work

Synthetic Population in Transportation: Why?

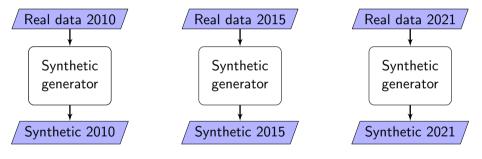

Real Data

- High cost of data collection.
- Lack of representativity.
- Data privacy constraints.


Synthetic Data

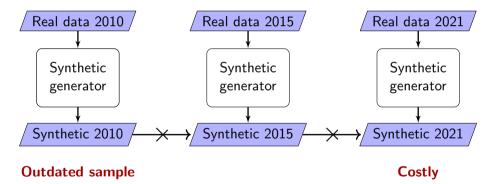
- Open source.
- Bias correction.
- Privacy preservation.

Synthetic Population = tabular data on individuals and households


э

Outdated sample

э


Complicated and Repetitive

Outdated sample

э

Complicated and Repetitive

э

→ Ξ → → Ξ →

Synthetic Population Projections

Step 1: Generate

Step 2: Project

イロト イヨト イヨト

э

Outline

1 Motivation

2 Literature review

- 3 Contribution
- 4 Methodology
- 5 Results: Case study of Switzerland
- 6 Conclusion and Future Work

э

Literature review - Generation and Projection

	Dynamic projection	Static projection	Resampling
Synthetic reconstruction	Fatmi et al. ^[1] 2017	Lomax et al. ^[2] 2022	Prédhumeau et al. ^[3] 2023
Combinatorial optimisation	Namazi-Rad et el. ^[4] 2014	x	x
Statistical learning	Hybrid Simulator for Capturing Dynamics Model-driven	x	Hybrid Simulator for Capturing Dynamics Data-driven

э

メロト メポト メヨト メヨト

Literature Gaps

Dynamic projection

- Evolves population.
- Heterogeneous sample.

Re-sampling

- Copying data instead of evolving.
- Lack of heterogenity over time.

Literature Gaps

Dynamic projection

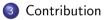
- Evolves population.
- Heterogeneous sample.
- Propagation of the generation bias.
- Increase of the error over time.
- Not robust to the unusual events.
- Dependent on input rates.

Re-sampling

- Copying of data instead of evolving.
- Lack of heterogeneity over time.
- Can achieve a perfect fit.

Literature Gaps

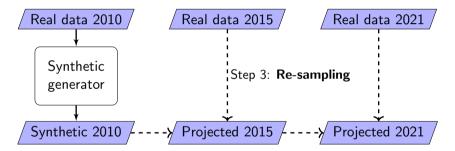
Dynamic projection requires demographic rates to simulate events! Demographers provide reports on **demographic rates** every five years. **Assumption:** Population trends remain **stable** over time.


Problems

Although **rates** are frequently **updated**, **synthetic datasets** made using them **are not**. **Unforeseen events** can result in projections that **do not represent** the real population. Affects the **outcomes of transportation models** employing these samples. Problematic for **long-term** forecast.

Outline

Literature review


5 Results: Case study of Switzerland

6 Conclusion and Future Work

14

Contribution - Previous work

• Combine dynamic projection and resampling at the level of individuals ^[5].

Step 1: Generation Step 2: Dynamic Projection Step 4: Validation Model-based and Data-driven approach

Barcelona - Internal Seminar 2024

Hybrid Simulator for Capturing Dynamics

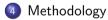
Contribution - Previous work

• Simulate effect of **death**, **birth**, **migration** to synthetic individuals described by **age**, **gender**, **employment**.

What we showed?

- Maintenance of synthetic samples without regenerating.
- Access to up-to-date data and making use of the past.
- Trade-off between accuracy and efficiency.

Contribution - Current work


- Expand the method from the level of individuals to the household level.
- Evaluate **robustness** of hybrid simulator to **unforeseen events** (i.e., COVID-19) compared to state-of-the-art methods.

Outline

2 Literature review

5 Results: Case study of Switzerland

6 Conclusion and Future Work

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(4) (3) (4) (4) (4)

Hybrid Simulator for Capturing Dynamics

Step 1: Generation

Markov Chain Monte Carlo Simulation. ^[6] Synthetic households of size N, $X = (X_{type}, X_{nb_cars}, [individuals_i]_{i \in [1...N]})$. Synthetic individual described by $X_{age}, X_{gender}, X_{empl}, X_{marital}, X_{dl}$. Bootstrap and convergence monitoring.

Step 2: Dynamic projection

When disaggregated data are not available.

Simulate events: birth, death, migration, marriage, divorce, leaving the house.

Use the rates provided by the Swiss Federal Office (BFS) ^[7].

Hybrid Simulator for Capturing Dynamics

Step 3: Re-sampling

When disaggregated data are available.

Compare projected household-type marginals with real data.

Add or delete households to achieve desired fit.

Step 4: Validation

Compare marginal and sub-distributions with real data.

Statistics (e.g., SRMSE) and Visualization.

Evaluate projections to unforeseen events

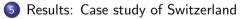
Test two scenarios:

Pre-pandemic: Using rates from the report from **2010 without knowing** about the pandemic.

Post-pandemic: Using rates from the report from **2021 knowing** about the pandemic.

Goal:

Compare dynamic projection and hybrid simulator for these two scenarios by projecting samples from 2010 to 2021.


Outline

1 Motivation

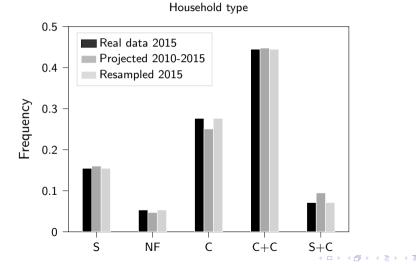
2 Literature review

6 Conclusion and Future Work

イロト イボト イヨト イヨ

Generation of synthetic sample 2010 - Household level

Reference data: weighted MTMC 2010, 2015, 2021 [BFS]


Household type

Real 2010 0.3 Synthetic 2010 0.4 -Frequency 0.2 0.2 0.10 NF С C+C S+C 0 2 3 ≥ 5 S 4

Figure: The comparison of household marginals between synthetic and real sample from 2010

Number of cars

Dynamic Projection (2010-2015) and Re-sampling (2015)

	Pre-pandemic scenario		Post-pandemic scenario	
Variable	Dynamic projection	Hybrid simulator	Dynamic projection	Hybrid simulator
Household size	0.22	0.15	0.19	0.12
Household type	0.24	0.1	0.15	0.08
Number of cars	0.32	0.18	0.24	0.12
Age	0.24	0.07	0.04	0.02
Gender	0.01	0.01	0.01	0.01
Driving licence	0.1	0.1	0.1	0.1
Marital status	0.07	0.06	0.07	0.06
Employment	0.26	0.25	0.16	0.15
Average SRMSE	0.18	0.11	0.12	0.08

3

The hybrid simulator achieved a better score (i.e., lower) for each attribute in both scenarios.

	Pre-pandemic scenario		Post-pandemic scenario	
Variable	Dynamic projection	Hybrid simulator	Dynamic projection	Hybrid simulator
Household size	0.22	0.15	0.19	0.12
Household type	0.24	0.1	0.15	0.08
Number of cars	0.32	0.18	0.24	0.12
Age	0.24	0.07	0.04	0.02
Gender	0.01	0.01	0.01	0.01
Driving licence	0.1	0.1	0.1	0.1
Marital status	0.07	0.06	0.07	0.06
Employment	0.26	0.25	0.16	0.15
Average SRMSE	0.18	0.11	0.12	0.08

(日)

Some attributes are not affected by unforeseen events.

	Pre-pandemic scenario		Post-pandemic scenario	
Variable	Dynamic projection	Hybrid simulator	Dynamic projection	Hybrid simulator
Household size	0.22	0.15	0.19	0.12
Household type	0.24	0.1	0.15	0.08
Number of cars	0.32	0.18	0.24	0.12
Age	0.24	0.07	0.04	0.02
Gender	0.01	0.01	0.01	0.01
Driving licence	0.1	0.1	0.1	0.1
Marital status	0.07	0.06	0.07	0.06
Employment	0.26	0.25	0.16	0.15
Average SRMSE	0.18	0.11	0.12	0.08

(a) < (a) < (b) < (b)

Using updated rates leads to better results for both methods.

	Pre-pandemic scenario		Post-pandemic scenario	
Variable	Dynamic projection	Hybrid simulator	Dynamic projection	Hybrid simulator
Household size	0.22	0.15	0.19	0.12
Household type	0.24	0.1	0.15	0.08
Number of cars	0.32	0.18	0.24	0.12
Age	0.24	0.07	0.04	0.02
Gender	0.01	0.01	0.01	0.01
Driving licence	0.1	0.1	0.1	0.1
Marital status	0.07	0.06	0.07	0.06
Employment	0.26	0.25	0.16	0.15
Average SRMSE	0.18	0.11	0.12	0.08

The difference between pre and post-pandemic scenarios is smaller for the hybrid simulator.

	Pre-pandemic scenario		Post-pandemic scenario	
Variable	Dynamic projection	Hybrid simulator	Dynamic projection	Hybrid simulator
Household size	0.22	0.15	0.19	0.12
Household type	0.24	0.1	0.15	0.08
Number of cars	0.32	0.18	0.24	0.12
Age	0.24	0.07	0.04	0.02
Gender	0.01	0.01	0.01	0.01
Driving licence	0.1	0.1	0.1	0.1
Marital status	0.07	0.06	0.07	0.06
Employment	0.26	0.25	0.16	0.15
Average SRMSE	0.18	0.11	0.12	0.08

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

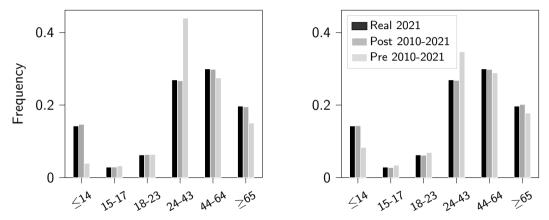


Figure: Marginal distribution of the age using pre and post-pandemic rates compared to the real data - (left) dynamic projection; (right) hybrid simulator

Outline

1 Motivation

2 Literature review

3 Contribution

5 Results: Case study of Switzerland

6 Conclusion and Future Work

イロト イボト イヨト イヨ

Conclusion and Future Work

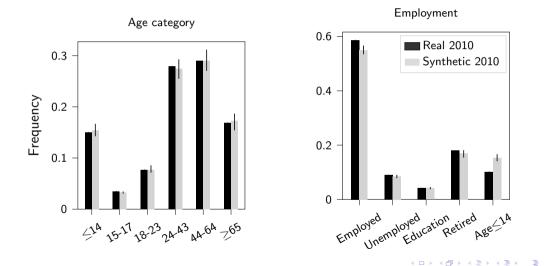
We show:

- Resampling step helps reduce the accumulated projection error of dynamic projection.
- The hybrid simulator is more robust to unforeseen events than the dynamic projection.
- The significance of validating and updating synthetic projected samples.

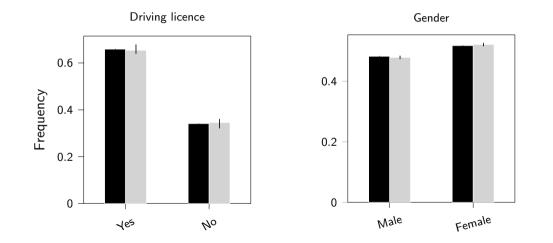
Future work

• How to model synthetic individuals over time using Gibbs Sampler?

Thank you! Questions?

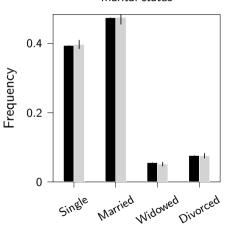


Contact: marija.kukic@epfl.ch



Barcelona - Internal Seminar 2024

Backup slides



Backup slides

э

Backup slides

Marital status

36

Backup slides - Dynamic projection - Births

Algorithm Births simulation

Require: *P* - synthetic population

- 1: for (a, m, o) in [age classes, marital statuses, birth orders] do
- 2: Extract mother candidates M in P with attributes (a, m, o)
- 3: Get the number *B* of births with attributes (a, m, o) {From BFS data}
- 4: Draw B mothers from M
- 5: Add newborn in mothers' households
- 6: end for

Backup slides - Dynamic projection - Migrations

Algorithm Migration simulation

- 1: *P* synthetic population
- 2: for (a,g) in [ages, genders] do
- 3: Get the net migration N for attributes (a, g) {From BFS data}
- 4: **if** $N \ge 0$ **then**
- 5: Draw N individuals with attributes (a, g) from P {With replacement}
- 6: Duplicate the N individuals
- 7: Build households from new individuals
- 8: **else**
- 9: Remove N individuals with attributes (a, g) from P
- 10: Adapt modified households
- 11: end if
- 12: end for

ヘロト 人間ト ヘヨト ヘヨト

Backup slides - Dynamic projection - Marriages

Algorithm Marriages simulation

- 1: P synthetic population
- 2: for (h, w) in [husband ages, wife ages] do
- 3: Get marriage count N for attributes (h, w) {From BFS data}
- 4: Extract husband candidates H from P
- 5: Extract wife candidates W from P
- 6: Draw N couples from product set $H \times W$
- 7: Create new households for each couple
- 8: Change couple marital status to "Married"
- 9: Adapt modified households
- 10: end for

Algorithm Leaving the house simulation

- 1: P synthetic population
- 2: r official percentage of children in parental house
- 3: Extract individuals C from P with age in [15-28]
- 4: Extract individuals C_{parent} from C living in parental house
- 5: Compute the current percentage $r_{cur} = \frac{|C_{parent}|}{|C|}$
- 6: if $r_{cur} > r$ then

7:
$$N \leftarrow \lfloor (r_{cur} - r) \cdot |P| \rfloor$$

- 8: Assign weights by age to C_{parent}
- 9: Sample N candidates from C_{parent} with weights
- 10: **for** each *c* in candidates **do**
- 11: **if** *c* has children **then**
- 12: Create a new house with type "Single-parent"
- 13: else
- 14: Create a new single household
- 15: end if
- 16: end for
- 17: Adapt impacted household
- 18: end if

Backup slides - Resampling

Algorithm Resampling procedure

- 1: Input:
- 2: counts_real an array of frequency counts per household type in the reference sample
- 3: counts_projected an array of frequency counts per household type in the projected sample
- 4: *list_of_types* an array of existing household types
- 5: num total number of household types
- 6: Function Resample(counts_real, counts_projected, list_of_types, num, projected_sample)
- 7: result_sample \leftarrow projected_sample
- 8: for $i \leftarrow 1$ to num do
- 9: $nb_of_observation \leftarrow abs(counts_real[i] counts_projected[i])$
- $10: \quad \ \ \text{if } \ \ counts_real[i] \ \ counts_projected[i] < 0 \ \ \text{then} \\$
- 11: Delete *list_of_types*[i], nb_of_observation from result_sample
- 12: **else**
- 13: Add *list_of_types*[i], nb_of_observation to result_sample
- 14: end if
- 15: end for
- 16: end Function