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Microeconomics

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her
outcome

Utility

Un : Cn −→ R : a Un(a)

captures the attractiveness of an alternative

measure that the decision maker wants to optimize

Behavioral assumption

the decision maker associates a utility with each alternative

the decision maker is a perfect optimizer

the alternative with the highest utility is chosen
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Microeconomics Microeconomic consumer theory

Microeconomic consumer theory

Continuous choice set

Consumption bundle

Q =




q1
...
qL


 ; p =




p1
...
pL




Budget constraint

pTQ =
L∑

ℓ=1

pℓqℓ ≤ I .

No attributes, just quantities
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Microeconomics Microeconomic consumer theory

Optimization

Optimization problem

max
Q

Ũ(Q; θ)

subject to
pTQ ≤ I , Q ≥ 0.

Demand function

Solution of the optimization problem

Quantity as a function of prices and budget

Q∗ = f (I , p; θ)
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Microeconomics Microeconomic consumer theory

Example

Optimization problem

max
q1,q2

Ũ(q1, q2; θ0, θ1, θ2) = θ0q
θ1
1 qθ22

subject to
p1q1 + p2q2 = I .

Lagrangian of the problem:

L(q1, q2, λ) = θ0q
θ1
1 qθ22 + λ(I − p1q1 − p2q2).

Necessary optimality condition

∇L(q1, q2, λ) = 0
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Microeconomics Microeconomic consumer theory

Demand functions

Product 1

q∗1 =
I

p1

θ1
θ1 + θ2

Product 2

q∗2 =
I

p2

θ2
θ1 + θ2

Comments

Demand decreases with price

Demand increases with budget

Demand independent of θ0, which does not affect the ranking

Property of Cobb Douglas: the demand for a good is only dependent
on its own price and independent of the price of any other good.
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Microeconomics Indirect utility

Indirect utility

Substitute the demand function into the utility

U(I , p; θ) = θ0

(
I

p1

θ1
θ1 + θ2

)θ1
(

I

p2

θ2
θ1 + θ2

)θ2

Indirect utility

Maximum utility that is achievable for a given set of prices and income

In discrete choice...

only the indirect utility is used

therefore, it is simply referred to as “utility”
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Microeconomics Indirect utility

Microeconomic theory of discrete goods

Expanding the microeconomic framework

Continuous goods

and discrete goods

The consumer

selects the quantities of continuous goods: Q = (q1, . . . , qL)

chooses an alternative in a discrete choice set i = 1, . . . , j , . . . , J

discrete decision vector: (y1, . . . , yJ), yj ∈ {0, 1},
∑

j yj = 1.

Note

In theory, one alternative of the discrete choice combines all possible
choices made by an individual.

In practice, the choice set will be more restricted for tractability
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Microeconomics Utility maximization

Utility maximization

Utility

Ũ(Q, y , z̃T y ; θ)

Q: quantities of the continuous good

y : discrete choice

z̃T = (z̃1, . . . , z̃i , . . . , z̃J) ∈ R
K×J : K attributes of the J alternatives

z̃T y ∈ R
K : attributes of the chosen alternative

θ: vector of parameters
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Microeconomics Utility maximization

Utility maximization

Optimization problem

max
Q,y

Ũ(Q, y , z̃T y ; θ)

subject to
pTQ + cT y ≤ I∑

j yj = 1

yj ∈ {0, 1}, ∀j .

where cT = (c1, . . . , ci , . . . , cJ) contains the cost of each alternative.

Solving the problem

Mixed integer optimization problem

No optimality condition

Impossible to derive demand functions directly
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Microeconomics Utility maximization

Solving the problem

Step 1: condition on the choice of the discrete good

Fix the discrete good, that is select a feasible y .

The problem becomes a continuous problem in Q.

Conditional demand functions can be derived:

qℓ|y = f (I − cT y , p, z̃T y ; θ),

or, equivalently, for each alternative i ,

qℓ|i = f (I − ci , p, z̃i ; θ).

I − ci is the income left for the continuous goods, if alternative i is
chosen.

If I − ci < 0, alternative i is declared unavailable and removed from
the choice set.
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Microeconomics Utility maximization

Solving the problem

Conditional indirect utility functions

Substitute the demand functions into the utility:

Ui = U(I − ci , p, z̃i ; θ) for all i ∈ C.

Step 2: Choice of the discrete good

max
y

U(I − cT y , p, z̃T y ; θ)

Enumerate all alternatives.

Compute the conditional indirect utility function Ui .

Select the alternative with the highest Ui .

Note: no income constraint anymore.
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Microeconomics The random utility model

Random utility model

Random utility

Uin = Vin + εin = βTXin + εin.

Similarity with linear regression

Y = βTX + ε

Here, U is not observed. Only the choice is observed.

Choice model

P(i |Cn) = Pr(Uin ≥ Ujn, ∀j ∈ Cn),
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The logit model

Road map

Microeconomics
in a nutshell

Logit and
MEV models

Optimization Discrete choice
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The logit model

Error term

Random utility

Uin = Vin + εin.

Assumptions about the distribution

Probit: central limit theorem: the sum of many i.i.d. random
variables approximately follows a normal distribution.

Logit: Gumbel theorem: the maximum of many i.i.d. random
variables approximately follows an Extreme Value distribution:
EV(η, µ).
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The logit model

The Extreme Value distribution EV(η, µ)

Probability density function (pdf)

f (t) = µe−µ(t−η)e−e−µ(t−η)

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞
f (t)dt

= e−e−µ(c−η)
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The logit model

Logit model

Assumptions

εin are i.i.d. EV(0, µ).

Choice model

Pn(i |Cn) =
yine

µVin

∑J
j=1 yjne

µVjn

.
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The logit model

Logit model

Uin = Vin + εin.

Why “logit”?

If Uin and Ujn are EV distributed, Uin − Ujn follows a logistic distribution.

Availability of alternatives

yin =

{
1 if i ∈ Cn,
0 otherwise.

yin=1 if alternative i is available to individual n.
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Profit optimization, facility location

A simple example

Data

C: set of movies

Population of N individuals

Utility function:
Uin = βinpin + f (zin) + εin

Decision variables

What movies to propose? yin

What price? pin
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Profit optimization, facility location

Profit maximization

Data

Two alternatives: my theater (m) and
the competition (c)

We assume an heterogenous
population of N individuals

Ucn = 0 + εcn

Umn = βnpm + cmn + εmn

βn < 0

Logit model: εmn i.i.d. EV
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Profit optimization, facility location

Heterogeneous population

Two groups in the population

Umn = βnpm + cmn + εmn

n = 1: Young fans:
2/3

β1 = −10, cm1 = 3

n = 2: Others: 1/3

β1 = −0.9, c1m = 0
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Profit optimization, facility location

Illustrative example
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Profit optimization, facility location

Illustrative example
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Profit optimization, facility location

Optimization

Profit maximization

Non linear

Non convex

Facility location

Discrete
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Profit optimization, facility location

The main idea
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Profit optimization, facility location

The main idea

Linearization

Hopeless to linearize the logit formula (we tried...)

Anyway, we want to go beyond logit.
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Profit optimization, facility location

The main idea

Linearization

Hopeless to linearize the logit formula (we tried...)

Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability
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Profit optimization, facility location

A linear formulation

Utility function

Uin = Vin + εin =
∑

k

βkxink + f (zin) + εin.

Simulation

Assume a distribution for εin

E.g. logit: i.i.d. extreme value

Draw R realizations ξinr , r = 1, . . . ,R

The choice problem becomes
deterministic
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Profit optimization, facility location

Scenarios

Draws

Draw R realizations ξinr , r = 1, . . . ,R

We obtain R scenarios

Uinr =
∑

k

βkxink + f (zin) + ξinr .

For each scenario r , we can identify the largest utility.

It corresponds to the chosen alternative.

Michel Bierlaire (EPFL) Optimization and Discrete Choice Models April 25, 2023 34 / 97



Profit optimization, facility location

Capacities

Demand may exceed supply

Each alternative i can be chosen by
maximum ci individuals.

An exogenous priority list is available.

Can be randomly generated, or
according to some rules.

The numbering of individuals is
consistent with their priority.
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Profit optimization, facility location

Choice set

Variables

yi ∈ {0, 1} operator decision

ydin ∈ {0, 1} customer decision (data)

yin ∈ {0, 1} product of decisions

yinr ∈ {0, 1} capacity restrictions

Constraints

yin = ydinyi ∀i , n

yinr ≤ yin ∀i , n, r
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Profit optimization, facility location

Utility

Variables

Uinr utility

zinr =

{
Uinr if yinr = 1
ℓnr if yinr = 0

discounted utility

(ℓnr smallest lower bound)

Constraint: utility

Uinr =

Vin︷ ︸︸ ︷
βinpin + qd(xd)+ξinr ∀i , n, r
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Profit optimization, facility location

Utility (ctd)

Constraints: discounted utility

ℓnr ≤ zinr ∀i , n, r

zinr ≤ ℓnr +Minryinr ∀i , n, r

Uinr −Minr (1− yinr ) ≤ zinr ∀i , n, r

zinr ≤ Uinr ∀i , n, r
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Profit optimization, facility location

Choice

Variables

Unr = max
i∈C

zinr

winr =

{
1 if zinr = Unr

0 otherwise
choice

Constraints

zinr ≤ Unr ∀i , n, r

Unr ≤ zinr +Mnr (1− winr ) ∀i , n, r
∑

i

winr = 1 ∀n, r

winr ≤ yinr ∀i , n, r
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Profit optimization, facility location

Capacity

Capacity cannot be exceeded ⇒ yinr = 1

n−1∑

m=1

wimr ≤ (ci − 1)yinr + (n − 1)(1− yinr ) ∀i > 0, n > ci , r

Capacity has been reached ⇒ yinr = 0

ci (yin − yinr ) ≤
n−1∑

m=1

wimr , ∀i > 0, n, r
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Profit optimization, facility location

Family of models

Constraints

Set of linear constraints characterizing choice behavior

Can be included in any relevant optimization problem.

Examples

Profit maximization

Facility location

Difficulties

big M constraints

large dimensions
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Profit optimization, facility location

Profit maximization

Profit

If pin is the price paid by individual to purchase option i , the revenue
generated by this option is

1

R

R∑

r=1

N∑

n=1

pinwinr .

Linearization

If ain ≤ pin ≤ bin, we define ηinr = pinwinr , and the following constraints:

ainwinr ≤ ηinr

ηinr ≤ binwinr

pin − (1− winr )bin ≤ ηinr

ηinr ≤ pin − (1− winr )ain
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Profit optimization, facility location

A case study

Challenge

Take a choice model from the literature.

It cannot be logit.

It must involve heterogeneity.

Show that it can be integrated in a
relevant MILP.
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Profit optimization, facility location

A case study

Challenge

Take a choice model from the literature.

It cannot be logit.

It must involve heterogeneity.

Show that it can be integrated in a
relevant MILP.

Parking choice

[Ibeas et al., 2014]
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Profit optimization, facility location

Parking choices [Ibeas et al., 2014]

Alternatives

Paid on-street parking

Paid underground parking

Free street parking

Model

N = 50 customers

C = {PSP,PUP,FSP}

Cn = C ∀n

pin = pi ∀n

Capacity of 20 spots

Mixture of logit models
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Profit optimization, facility location

General experiments

Uncapacitated vs Capacitated case

Maximization of revenue

Unlimited capacity

Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

Reduced price for residents

Two scenarios
1 Subsidy offered by the municipality
2 Operator is forced to offer a reduced price
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Profit optimization, facility location

Uncapacitated vs Capacitated case

Uncapacitated
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Profit optimization, facility location

Computational time

Uncapacitated case Capacitated case
R Sol time PSP PUP Rev Sol time PSP PUP Rev

5 2.58 s 0.54 0.79 26.43 12.0 s 0.63 0.84 25.91
10 3.98 s 0.53 0.74 26.36 54.5 s 0.57 0.78 25.31
25 29.2 s 0.54 0.79 26.90 13.8 min 0.59 0.80 25.96
50 4.08 min 0.54 0.75 26.97 50.2 min 0.59 0.80 26.10
100 20.7 min 0.54 0.74 26.90 6.60 h 0.59 0.79 26.03
250 2.51 h 0.54 0.74 26.85 1.74 days 0.60 0.80 25.93
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Profit optimization, facility location

Facility location

Data

Uin: exogenous,

Ci : fixed cost to open a facility,

ci : operational cost per customer to run the facility.

Objective function

min
∑

i∈Ck

Ciyi +
1

R

∑

r

∑

i

∑

n

ciwinr
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Profit optimization, facility location

Benders decomposition

min
∑

i∈Ck

Ciyi +
1

R

∑

r

∑

i

∑

n

ciwinr

subject to

max
w

Unr =
∑

i

Uinrwinr

∑

i

winr ≤ 1

winr ≤ yi

winr ≥ 0

winr , yi ∈ {0, 1}.
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Profit optimization, facility location

Benders decomposition

Customer subproblem: fix y∗i

max
w

Unr =
∑

i

Uinrwinr

subject to

∑

i

winr = 1

winr ≤ y∗i

winr ≥ 0.

Property

Totally unimodular: no integrality constraint is required.
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Profit optimization, facility location

Benders decomposition

Primal

min
w

U = −
∑

i

Uiwi

subject to

∑

i

wi = 1

wi ≤ y∗i ∀i

wi ≥ 0.

Dual

max
λ,µ

λ+
∑

i

µiy
∗
i

subject to

λ+ µi ≤ −Ui ∀i

µi ≤ 0 ∀i

Michel Bierlaire (EPFL) Optimization and Discrete Choice Models April 25, 2023 51 / 97



Profit optimization, facility location

Bender decomposition

Ongoing work

Exploit the duality results to generate cuts for the master problem.

Investigate the use of Benders for other problems.

profit maximization,
maximum likelihood estimation of the parameters.
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Profit optimization, facility location

Road map

Microeconomics
in a nutshell

Logit and
MEV models

Profit maximization,
facility location

Activity-based models

Optimization Discrete choice
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Activity-based models

Outline
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Activity-based models

Introduction

Travel demand is derived from activity
demand.

Activity demand is influenced by
socio-economic characteristics, social
interactions, cultural norms, basic
needs, etc. [Chapin, 1974]

Activity demand is constrained in space
and time [Hägerstraand, 1970].

Activity-based models
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Activity-based models

Travel demand models

Space Space Space

Time Time Time

H

W

S
H

D

H

H
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SH
H

D
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H
W

WS SH
H D

DH

Schedule Tours Trips

H: Home, W: Work, S: Shop, D: Dining out [Source: M. Ben-Akiva]
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Activity-based models

Literature

Econometric models Rule-based models
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Activity-based models

Research question: can we combine the two?

Econometric Rule-based

Micro-economic theory X —
Parameter inference X —
Testing/validation X —
Joint decisions — X
Complex rules — X
Complex constraints — X
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Activity-based models

Integrated approach

Assumptions

Individuals are utility maximizers.

All decisions are made together.

Decisions are subject to complex constraints and interactions.

Time constraint: to increase the activity duration, another activity is
impacted.
Interaction constraints: if I leave home by bus, driving my car is not an
option until I come back home.
Resource constraints: if my wife uses the only car in the household,
driving the car is not an option for me.
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Activity-based models

Integrated approach

Integrate the econometric and the rule-based approaches

Utility associated with activity participation, duration, etc.

Disutility associated with traveling.

Complex interactions and constraints are captured by rules.

Mathematical programming

Individuals are solving an optimization problem.

Decisions: activity participation and scheduling.

Objective function: utilities.

Constraints: complex rules.
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Activity-based models First principles

First principles

Each individual n has a time-budget (a
day).

Each activity a considered by n is
associated with a utility Uan.

Individuals schedule their activities as to
maximize the total utility, subject to
their time-budget constraint.

Michel Bierlaire (EPFL) Optimization and Discrete Choice Models April 25, 2023 61 / 97



Activity-based models First principles

Further assumptions

Individuals are time sensitive

Have a desired start time, duration
and/or end time for each activity

Deviations from their desired times in
the scheduling process decrease the
utility function
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Activity-based models First principles

Activities

Set A of activities.

Location sa.

Transportation mode: ma.

Starting time xa, 0 ≤ xa ≤ T .

Duration: τa ≥ 0.

Feasible time interval: [γ−a , γ
+
a ] (e.g. opening

hours).
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Activity-based models First principles

Scheduling
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Activity-based models First principles

Penalty for early or late starting time

Parameters depend on the category type

Time

Utility
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Activity-based models First principles

Disutility of travel

Traveling is part of the activity

Travel (time and cost) from a to a+

negatively contributes to Ua: ta, cta .

Exception: last activity of the day
(home).
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Activity-based models First principles

Utility function

An individual n derives the following utility from performing activity a,
with a schedule flexibility k :

Uan = can + θe max(x∗a − xa, 0)

+ θℓmax(xa − x∗a , 0)

+ θds max(τ∗a − τa, 0)

+ θdℓmax(τa − τ∗a , 0)

+ θttta + θtccta

+ θcca + ξan,

where ξan is a random term with a known distribution.
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Activity-based models First principles

Utility function

Error terms

Rely on simulation.

Draw ξanr , r = 1, . . . ,R .

Optimization problem for each r .

Utility: Uanr .
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Activity-based models First principles

Households

Assumptions

Members of the households are altruist.

Everybody makes decisions for the sake of the household.

Objective function: sum of the utilities of each individual

Model

Similar model as for individuals.

Resource constraints can easily be added.
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Activity-based models Model

Decision variables for individual n and draw r

For each (potential) activity a:

Activity participation: wanr ∈ {0, 1}.

Starting time: xanr ∈ {0, . . . ,T}.

Duration: τanr ∈ {0, . . . ,T}.

Scheduling: zabnr ∈ {0, 1}: 1 if activity b immediately follows a.

Travel time: tanr : travel time from a to the next activity.
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Activity-based models Model

Objective function

Additive utility

max
∑

n

∑

a∈A

wanrUanr
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Activity-based models Model

Constraints

Time budget
∑

a

τanr + tanr = T , ∀n, r .

Cost budget
∑

a

cawanr + tcanr = B , ∀n, r .

Time windows

0 ≤ γ−a ≤ xanr ≤ xanr + τanr ≤ γ+a ≤ T , ∀a, n, r .
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Activity-based models Model

Constraints

Precedence constraints

zabnr + zbanr ≤ 1, ∀a, b, n, r .

Single successor/predecessor

∑

b∈A\{a}

zabnr = wanr , ∀a, n, r ,

∑

b∈A\{a}

zbanr = wanr , ∀a, n, r .
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Activity-based models Model

Constraints

Travel time

tanr =
∑

b∈A

zabnrρ
ma(sa, sb).

Consistent timing

(zabnr − 1)T ≤ xanr + τanr + tanr − xbnr ≤ (1− zabnr )T , ∀a, b, n, r .

Mutually exclusive duplicates
∑

a∈Bk

wanr = 1, ∀k , n, r .
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Activity-based models Model

Constraints

Interaction constraint

If I leave home by bus, driving my car is not an option until I come
back home.

δcaranr = 1 if car is available for activity a.

δcaranr ≥ δcarbnr + zabnr − 1.

Michel Bierlaire (EPFL) Optimization and Discrete Choice Models April 25, 2023 75 / 97



Activity-based models Model

Constraints

Resource constraints

Resource (e.g. private vehicle) considered as an agent with a schedule.

Maximum one activity at each time-step.

Constraint: resource must be accompanied by an adult agent
throughout the tour.

Except when idling (vehicle at the parking at home).
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Activity-based models Model

Constraints: other examples

Participation constraints

Participation constraints: if I drop the children off, somebody needs
to pick them up later.

Drop-off: activity a.

Pick-up: activity b.

Activity participation: wbnr ≥ wanr

Timing: xbnr ≥ xanr .

Sequence constraints

If I go grocery shopping I need to go back home before doing another
activity.

Shopping: activity a.

Home: activity b.
zabnr ≥ wanr .
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Activity-based models Model

Integrated framework

Mathematical programming

Utility maximization.

Scheduling problem.

Rules are translated into additional constraints.

Stochasticity is captured by simulation.
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Activity-based models Applications

Simulation: From isolated individuals...

Sara

David

Alice
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Activity-based models Applications

Simulation: To family of 2; 2 adults with no children...

Sara

David

Car
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Activity-based models Applications

Simulation: Family of 2; 2 adults with no children. . .

Table: Car location sequence and occupancy in the example of family of 2

Location Start time (hh:mm) End time (hh:mm) Duration (hh:mm) Person using Parked out indicator Car occupancy

Home 00:00 7:54 7:54 - 0 0
On the road 7:54 8:30 0:36 1 0 1

Work 8:30 14:30 6:00 1 1 0
On the road 14:30 14:56 0:26 1 0 1

Other2 14:56 16:27 1:31 1 1 0
On the road 16:27 17:00 0:33 1 0 1

Home 17:00 17:05 0:05 - 0 0
On the road 17:05 17:38 0:33 1&2 0 2

Other1 17:38 22:27 4:49 1&2 1 0
On the road 22:27 23:00 0:33 1&2 0 2

Home 23:00 24:00 1:00 - 0 0
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Activity-based models Applications

Simulation: To family of 3; 2 adults and 1 child. . .

Sara

David

Alice

Car
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Activity-based models Applications

Simulation: Family of 3; 2 adults and 1 child

Table: Car location sequence and occupancy in the example of family of 3

Location Start time (hh:mm) End time (hh:mm) Duration (hh:mm) Person using Parked out indicator Car occupancy

Home 00:00 7:12 7:12 - 0 0
On the road 7:12 7:45 0:33 1&3 0 2

School 7:45 7:47 0:02 1 0 1
On the road 7:47 8:15 0:28 1 0 1

Work 8:15 14:15 6:00 1 1 0
On the road 14:15 14:40 0:25 1 0 1

Other2 14:40 15:22 0:42 1 1 0
On the road 15:22 16:00 0:38 1 0 1

School 16:00 16:02 0:02 1 0 1
On the road 16:02 16:33 0:31 1&3 0 2

Home 16:33 24:00 7:27 - 0 0
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Activity-based models Applications

Distributions

Sara

David

Figure: Isolated indiv. Figure: Family of 2 Figure: Family of 3
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Activity-based models Applications

Distributions

Alice

Figure: Isolated individual Figure: Family of 3
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Activity-based models Schedule simulation

Schedule simulation

Data set

2015 Mobility and Transport Microcensus [ARE 2017]

Nationwide travel survey conducted every 5 years

Lausanne sample: 1118 individuals

Students: 236 individuals
Workers: 618 individuals
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Activity-based models Schedule simulation

Visual validation

Distribution of activities over the day

Data: Swiss microcensus (validation sample).

Literature: model with 8 parameters, borrowed from the literature.

Generic: model with generic coefficients, estimated from data
(previous slide).

Activity-specific: model with a set of coefficients for each activity
type, estimated from data (20 parameters).
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Activity-based models Schedule simulation

Visual validation
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Activity-based models Schedule simulation

OPTIMs

OPTimization of Individual Mobility Schedules, [Manser et al., 2022]

Collaboration with Swiss Federal Railways.

Integration of the optimization framework into their long-term travel
demand forecasting tool (SIMBA MOBi).
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Activity-based models Schedule simulation

Conclusions

Achievements so far

Formulation of the model.

Procedure for the estimation of the parameters.

Simulation of complex and valid activity schedules.

Simulation of complex resources constraints.

Simulation of household coordination.

Application to real case studies.

Challenges

Latent preferences (desired start times, durations...)

Validation.
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Activity-based models Schedule simulation

Summary

Motivation: design operational activity-based models.

Combine the econometric and the rule-based approaches.

Methodological contribution: use mathematical programming and
simulation.

Simulation of activity schedule: [Pougala et al., 2022a].

Application with the Swiss Railways: [Manser et al., 2022].

Estimation of the parameters: [Pougala et al., 2022b].

Household interactions: under preparation.

Main advantage of the framework: flexibility.
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Activity-based models Schedule simulation

Summary

Long term research vision

Synthetic population of households.

Week-based activity scheduling.

Real-time rescheduling.

Applications to transportation and energy.
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Conclusion

Outline

1 Introduction

2 Microeconomics

3 The logit model

4 Profit optimization, facility location

5 Activity-based models

6 Conclusion
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Conclusion

Conclusion

Microeconomics
in a nutshell

Logit and
MEV models

Profit maximization,
facility location

Activity-based models

Optimization Discrete choice

Textbook

Research
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