Optimization and Discrete Choice Models

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

April 25, 2023

EPFL

Optimization and Discrete Choice Models

Introduction

- 2 Microeconomics
- 3 The logit model
- 4 Profit optimization, facility location
- 5 Activity-based models

EPFL

Microeconomics in a nutshell

Microeconomics

Logit and MEV models

1 Introduction

Microeconomics

- 3 The logit model
- 4 Profit optimization, facility location
- 5 Activity-based models

EPFL

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her outcome

Utility

$$U_n: \mathcal{C}_n \longrightarrow \mathbb{R}: a \rightsquigarrow U_n(a)$$

- captures the attractiveness of an alternative
- measure that the decision maker wants to optimize

Behavioral assumption

- the decision maker associates a utility with each alternative
- the decision maker is a perfect optimizer
- the alternative with the highest utility is chosen

Michel Bierlaire (EPFL)

Optimization and Discrete Choice Models

5/97

Microeconomic consumer theory

Continuous choice set

• Consumption bundle

$$Q = \begin{pmatrix} q_1 \\ \vdots \\ q_L \end{pmatrix}; p = \begin{pmatrix} p_1 \\ \vdots \\ p_L \end{pmatrix}$$

Budget constraint

$$p^T Q = \sum_{\ell=1}^L p_\ell q_\ell \leq I.$$

• No attributes, just quantities

NSP-OR

5P5

Optimization

Optimization problem

 $\max_{Q} \, \widetilde{U}(Q;\theta)$

subject to

 $p^T Q \leq I, \ Q \geq 0.$

Demand function

- Solution of the optimization problem
- Quantity as a function of prices and budget

$$Q^* = f(I, p; \theta)$$

Fransp-DR

EPE

Example

Optimization problem

$$\max_{q_1,q_2}\widetilde{U}(q_1,q_2;\theta_0,\theta_1,\theta_2)=\theta_0q_1^{\theta_1}q_2^{\theta_2}$$

subject to

$$p_1q_1 + p_2q_2 = I.$$

Lagrangian of the problem:

$$L(q_1, q_2, \lambda) = \theta_0 q_1^{\theta_1} q_2^{\theta_2} + \lambda (I - p_1 q_1 - p_2 q_2).$$

Necessary optimality condition

$$\nabla L(q_1,q_2,\lambda)=0$$

TRANSP-OR

ΞP

Demand functions

Product 1

$$q_1^* = \frac{I}{p_1} \frac{\theta_1}{\theta_1 + \theta_2}$$

Product 2

$$q_2^* = \frac{I}{p_2} \frac{\theta_2}{\theta_1 + \theta_2}$$

Comments

- Demand decreases with price
- Demand increases with budget
- Demand independent of θ_0 , which does not affect the ranking
- Property of Cobb Douglas: the demand for a good is only dependent on its own price and independent of the price of any other good.

Indirect utility

Indirect utility

Substitute the demand function into the utility

$$U(I, p; \theta) = \theta_0 \left(\frac{I}{p_1} \frac{\theta_1}{\theta_1 + \theta_2}\right)^{\theta_1} \left(\frac{I}{p_2} \frac{\theta_2}{\theta_1 + \theta_2}\right)^{\theta_2}$$

Indirect utility

Maximum utility that is achievable for a given set of prices and income

In discrete choice...

- only the indirect utility is used
- therefore, it is simply referred to as "utility"

Microeconomic theory of discrete goods

Expanding the microeconomic framework

- Continuous goods
- and discrete goods

The consumer

- selects the quantities of continuous goods: $Q = (q_1, \ldots, q_L)$
- chooses an alternative in a discrete choice set $i=1,\ldots,j,\ldots,J$
- discrete decision vector: (y_1, \ldots, y_J) , $y_j \in \{0, 1\}$, $\sum_j y_j = 1$.

Note

- In theory, one alternative of the discrete choice combines all possible choices made by an individual.
- In practice, the choice set will be more restricted for tractability

Utility maximization

Utility

$$\widetilde{U}(Q, y, \widetilde{z}^T y; \theta)$$

- Q: quantities of the continuous good
- y: discrete choice
- $\tilde{z}^{\mathsf{T}} = (\tilde{z}_1, \dots, \tilde{z}_i, \dots, \tilde{z}_J) \in \mathbb{R}^{K \times J}$: K attributes of the J alternatives
- $\tilde{z}^T y \in \mathbb{R}^{K}$: attributes of the chosen alternative
- θ : vector of parameters

SPSL

Utility maximization

Optimization problem

$$\max_{\boldsymbol{Q},\boldsymbol{y}} \, \widetilde{U}(\boldsymbol{Q},\boldsymbol{y}, \tilde{\boldsymbol{z}}^{\mathsf{T}}\boldsymbol{y}; \theta)$$

subject to

$$p^T Q + c^T y \leq I$$

 $\sum_j y_j = 1$
 $y_j \in \{0, 1\}, \forall j.$

where $c^T = (c_1, \ldots, c_i, \ldots, c_J)$ contains the cost of each alternative.

Solving the problem

- Mixed integer optimization problem
- No optimality condition
- Impossible to derive demand functions directly

Solving the problem

Step 1: condition on the choice of the discrete good

- Fix the discrete good, that is select a feasible y.
- The problem becomes a continuous problem in Q.
- Conditional demand functions can be derived:

$$q_{\ell|y} = f(I - c^T y, p, \tilde{z}^T y; \theta),$$

or, equivalently, for each alternative *i*,

$$q_{\ell|i} = f(I - c_i, p, \tilde{z}_i; \theta).$$

- $I c_i$ is the income left for the continuous goods, if alternative *i* is chosen.
- If $I c_i < 0$, alternative *i* is declared unavailable and removed from the choice set.

Solving the problem

Conditional indirect utility functions

Substitute the demand functions into the utility:

$$U_i = U(I - c_i, p, \tilde{z}_i; \theta)$$
 for all $i \in C$.

Step 2: Choice of the discrete good

$$\max_{y} U(I - c^{T}y, p, \tilde{z}^{T}y; \theta)$$

- Enumerate all alternatives.
- Compute the conditional indirect utility function U_i.
- Select the alternative with the highest U_i .
- Note: no income constraint anymore.

15 / 97

Random utility model

Random utility

$$U_{in} = V_{in} + \varepsilon_{in} = \beta^T X_{in} + \varepsilon_{in}.$$

Similarity with linear regression

$$Y = \beta^T X + \varepsilon$$

Here, U is not observed. Only the choice is observed.

Choice model

$$P(i|\mathcal{C}_n) = \Pr(U_{in} \geq U_{jn}, \forall j \in \mathcal{C}_n),$$

- Microeconomics
- 3 The logit model
 - Profit optimization, facility location
 - 5 Activity-based models

EPFL

Road map

EPFL

Error term

Random utility

$$U_{in} = V_{in} + \varepsilon_{in}.$$

Assumptions about the distribution

- Probit: central limit theorem: the sum of many i.i.d. random variables approximately follows a normal distribution.
- Logit: Gumbel theorem: the maximum of many i.i.d. random variables approximately follows an Extreme Value distribution: EV(η, μ).

The Extreme Value distribution $EV(\eta, \mu)$

Probability density function (pdf)

$$f(t) = \mu e^{-\mu(t-\eta)} e^{-e^{-\mu(t-\eta)}}$$

Cumulative distribution function (CDF)

$$P(c \ge \varepsilon) = F(c) = \int_{-\infty}^{c} f(t) dt$$
$$= e^{-e^{-\mu(c-\eta)}}$$

Logit model

Assumptions

 ε_{in} are i.i.d. EV(0, μ).

Choice model

$$P_n(i|\mathcal{C}_n) = \frac{y_{in}e^{\mu V_{in}}}{\sum_{j=1}^J y_{jn}e^{\mu V_{jn}}}.$$

Logit model

$$U_{in} = V_{in} + \varepsilon_{in}.$$

Why "logit"? If U_{in} and U_{jn} are EV distributed, $U_{in} - U_{jn}$ follows a logistic distribution.

Availability of alternatives

$$y_{in} = \left\{ egin{array}{cc} 1 & ext{if } i \in \mathcal{C}_n, \\ 0 & ext{otherwise.} \end{array}
ight.$$

 $y_{in=1}$ if alternative *i* is available to individual *n*.

Road map

- 1 Introduction
- 2 Microeconomics
- 3 The logit model
- Profit optimization, facility location
 - 5 Activity-based models

EPFL

A simple example

Data

- $\bullet \ \mathcal{C} :$ set of movies
- Population of N individuals
- Utility function:

$$U_{in} = \beta_{in} p_{in} + f(z_{in}) + \varepsilon_{in}$$

Decision variables

- What movies to propose? y_{in}
- What price? p_{in}

Profit maximization

Data

- Two alternatives: my theater (m) and the competition (c)
- We assume an heterogenous population of *N* individuals

$$U_{cn} = 0 + \varepsilon_{cn}$$
$$U_{mn} = \beta_n p_m + c_{mn} + \varepsilon_{mn}$$

• $\beta_n < 0$ • Logit model: ε_{mn} i.i.d. EV

Michel Bierlaire (EPFL)

SP5

Heterogeneous population

Two groups in the population

$$U_{mn} = \beta_n p_m + c_{mn} + \varepsilon_{mn}$$

$$\begin{array}{l} n = 1: \text{ Young fans:} \\ 2/3 \\ \beta_1 = -10, \ c_{m1} = 3 \end{array} \ \left| \begin{array}{l} n = 2: \text{ Others: } 1/3 \\ \beta_1 = -0.9, \ c_{1m} = 0 \end{array} \right|$$

EPFL

27 / 97

Illustrative example

Optimization and Discrete Choice Models

Illustrative example

Optimization

Profit maximization

- Non linear
- Non convex

Facility location

Discrete

WWW. PHDCOMICS. COM

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

32 / 97

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- The choice problem becomes deterministic

Scenarios

Draws

- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

EPEL

Capacities

- Demand may exceed supply
- Each alternative *i* can be chosen by maximum *c_i* individuals.
- An exogenous priority list is available.
- Can be randomly generated, or according to some rules.
- The numbering of individuals is consistent with their priority.

Choice set

Variables

$y_i \in \{0,1\}$	operator decision
$y_{in}^d \in \{0,1\}$	customer decision (data)
$y_{in} \in \{0,1\}$	product of decisions
$y_{inr} \in \{0,1\}$	capacity restrictions

Constraints

$$y_{in} = y_{in}^{d} y_{i} \quad \forall i, n$$

 $y_{inr} \leq y_{in} \quad \forall i, n, r$

Utility

Variables

$$\begin{array}{ll} U_{inr} & & \text{utility} \\ z_{inr} = \left\{ \begin{array}{ll} U_{inr} & \text{if } y_{inr} = 1 \\ \ell_{nr} & \text{if } y_{inr} = 0 \end{array} & & \text{discounted utility} \\ (\ell_{nr} \text{ smallest lower bound}) \end{array} \right.$$

Constraint: utility

$$U_{inr} = \overbrace{\beta_{in}p_{in} + q_d(x_d)}^{V_{in}} + \xi_{inr} \forall i, n, r$$

Utility (ctd)

Constraints: discounted utility

$$\begin{split} \ell_{nr} &\leq z_{inr} & \forall i, n, r \\ z_{inr} &\leq \ell_{nr} + M_{inr} y_{inr} & \forall i, n, r \\ U_{inr} - M_{inr} (1 - y_{inr}) &\leq z_{inr} & \forall i, n, r \\ z_{inr} &\leq U_{inr} & \forall i, n, r \end{split}$$

Optimization and Discrete Choice Models

Choice

Variables

$$U_{nr} = \max_{i \in C} z_{inr}$$
$$w_{inr} = \begin{cases} 1 & \text{if } z_{inr} = U_{nr} \\ 0 & \text{otherwise} \end{cases}$$
 choice

Constraints

$$\begin{aligned} z_{inr} &\leq U_{nr} & \forall i, n, r \\ U_{nr} &\leq z_{inr} + M_{nr}(1 - w_{inr}) & \forall i, n, r \\ \sum_{i} w_{inr} &= 1 & \forall n, r \\ w_{inr} &\leq y_{inr} & \forall i, n, r \end{aligned}$$

Michel Bierlaire (EPFL)

Optimization and Discrete Choice Models

April 25, 2023

Capacity

Capacity cannot be exceeded $\Rightarrow y_{inr} = 1$

$$\sum_{m=1}^{n-1} w_{imr} \leq (c_i - 1)y_{inr} + (n-1)(1 - y_{inr}) \; \forall i > 0, n > c_i, r$$

Capacity has been reached $\Rightarrow y_{inr} = 0$

$$c_i(y_{in}-y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr}, \ \forall i > 0, n, r$$

Family of models

Constraints

- Set of linear constraints characterizing choice behavior
- Can be included in any relevant optimization problem.

Examples

- Profit maximization
- Facility location

Difficulties

- big *M* constraints
- large dimensions

Profit maximization

Profit

If p_{in} is the price paid by individual to purchase option i, the revenue generated by this option is

$$\frac{1}{R}\sum_{r=1}^{R}\sum_{n=1}^{N}p_{in}w_{inr}.$$

Linearization

If $a_{in} \leq p_{in} \leq b_{in}$, we define $\eta_{inr} = p_{in}w_{inr}$, and the following constraints:

$$a_{in}w_{inr} \leq \eta_{inr}$$

 $\eta_{inr} \leq b_{in}w_{inr}$
 $p_{in} - (1 - w_{inr})b_{in} \leq \eta_{inr}$
 $\eta_{inr} \leq p_{in} - (1 - w_{inr})a_{in}$

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

Parking choice

• [lbeas et al., 2014]

Parking choices [lbeas et al., 2014]

Alternatives

- Paid on-street parking
- Paid underground parking
- Free street parking

Model

- N = 50 customers
- $C = \{PSP, PUP, FSP\}$
- $\mathcal{C}_n = \mathcal{C} \quad \forall n$
- $p_{in} = p_i \quad \forall n$
- Capacity of 20 spots
- Mixture of logit models

General experiments

Uncapacitated vs Capacitated case

- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

- Reduced price for residents
- Two scenarios
 - Subsidy offered by the municipality
 - 2 Operator is forced to offer a reduced price

45 / 97

Uncapacitated vs Capacitated case

Uncapacitated

Michel Bierlaire (EPFL)

Optimization and Discrete Choice Models

46 / 97

Computational time

	Uncapacitated case				Capacitated case			
R	Sol time	PSP	PUP	Rev	Sol time	PSP	PUP	Rev
5	2.58 s	0.54	0.79	26.43	12.0 s	0.63	0.84	25.91
10	3.98 s	0.53	0.74	26.36	54.5 s	0.57	0.78	25.31
25	29.2 s	0.54	0.79	26.90	13.8 min	0.59	0.80	25.96
50	4.08 min	0.54	0.75	26.97	50.2 min	0.59	0.80	26.10
100	20.7 min	0.54	0.74	26.90	6.60 h	0.59	0.79	26.03
250	2.51 h	0.54	0.74	26.85	1.74 days	0.60	0.80	25.93

Facility location

Data

- Uin: exogenous,
- C_i: fixed cost to open a facility,
- c_i: operational cost per customer to run the facility.

Objective function

$$\min \sum_{i \in \mathcal{C}_k} C_i y_i + \frac{1}{R} \sum_r \sum_i \sum_n c_i w_{inr}$$

48 / 97

Benders decomposition

$$\min \sum_{i \in \mathcal{C}_k} C_i y_i + \frac{1}{R} \sum_r \sum_i \sum_n c_i w_{inr}$$

subject to

$$egin{aligned} \max_w U_{nr} &= \sum_i U_{inr} w_{inr} \ &\sum_i w_{inr} \leq 1 \ &w_{inr} \leq y_i \ &w_{inr} \geq 0 \ &w_{inr}, y_i \in \{0,1\}. \end{aligned}$$

Benders decomposition

Customer subproblem: fix y_i^*

$$\max_{w} U_{nr} = \sum_{i} U_{inr} w_{inr}$$

subject to

$$\sum_{i} w_{inr} = 1$$
$$w_{inr} \le y_{i}^{*}$$
$$w_{inr} > 0.$$

Property

Totally unimodular: no integrality constraint is required.

Michel Bierlaire (EPFL)

Optimization and Discrete Choice Models

April 25, 2023

Benders decomposition

Primal

$$\min_{w} U = -\sum_{i} U_{i}w_{i}$$
subject to

$$\sum_{i} w_{i} = 1$$

$$w_{i} \leq y_{i}^{*} \quad \forall i$$

$$w_{i} \geq 0.$$
Dual

$$\max_{\lambda,\mu} \lambda + \sum_{i} \mu_{i}y_{i}^{*}$$
subject to

$$\lambda + \mu_{i} \leq -U_{i}$$

$$\mu_{i} \leq 0$$

Michel Bierlaire (EPFL)

∀i

∀i

Bender decomposition

Ongoing work

- Exploit the duality results to generate cuts for the master problem.
- Investigate the use of Benders for other problems.
 - profit maximization,
 - maximum likelihood estimation of the parameters.

52 / 97

Road map

Outline

- Introduction
- 2 Microeconomics
- 3 The logit model
- 4 Profit optimization, facility location

6 Activity-based models

Introduction

- Travel demand is derived from activity demand.
- Activity demand is influenced by socio-economic characteristics, social interactions, cultural norms, basic needs, etc. [Chapin, 1974]
- Activity demand is constrained in space and time [Hägerstraand, 1970].

Activity-based models

55 / 97

Travel demand models

Literature

Econometric models

$$\begin{split} & \tilde{\boldsymbol{S}}_{1} = \tilde{\boldsymbol{n}} \sum_{i=1}^{n} \tilde{\boldsymbol{n}}_{i} & \qquad \mu (\boldsymbol{v}_{i}^{2} = v \operatorname{Arc}(\boldsymbol{s}_{i}) + \tilde{\boldsymbol{s}}_{i}^{2} \sum_{i=1}^{n} (\tilde{\boldsymbol{s}}_{i}^{2} - \tilde{\boldsymbol{s}}_{i}^{2}) \sum_{i=1}^{n} (\tilde{$$

Rule-based models

Research question: can we combine the two?

	Econometric	Rule-based
Micro-economic theory	Х	
Parameter inference	Х	—
Testing/validation	Х	—
Joint decisions	—	Х
Complex rules	—	Х
Complex constraints		Х

Integrated approach

Assumptions

- Individuals are utility maximizers.
- All decisions are made together.
- Decisions are subject to complex constraints and interactions.
 - Time constraint: to increase the activity duration, another activity is impacted.
 - Interaction constraints: if I leave home by bus, driving my car is not an option until I come back home.
 - Resource constraints: if my wife uses the only car in the household, driving the car is not an option for me.

59 / 97

Integrated approach

Integrate the econometric and the rule-based approaches

- Utility associated with activity participation, duration, etc.
- Disutility associated with traveling.
- Complex interactions and constraints are captured by rules.

Mathematical programming

- Individuals are solving an optimization problem.
- Decisions: activity participation and scheduling.
- Objective function: utilities.
- Constraints: complex rules.

First principles

- Each individual n has a time-budget (a day).
- Each activity *a* considered by *n* is associated with a utility *U*_{an}.
- Individuals schedule their activities as to **maximize** the total utility, subject to their time-budget constraint.

Further assumptions

Individuals are time sensitive

- Have a desired <u>start time</u>, <u>duration</u> and/or end time for each activity
- Deviations from their desired times in the scheduling process decrease the utility function

Activities

- Set A of activities.
- Location s_a.
- Transportation mode: *m*_a.
- Starting time x_a , $0 \le x_a \le T$.
- Duration: $\tau_a \geq 0$.
- Feasible time interval: [γ⁻_a, γ⁺_a] (e.g. opening hours).

Scheduling

EPFL

First principles

Penalty for early or late starting time

Parameters depend on the category type

Disutility of travel

Traveling is part of the activity

- Travel (time and cost) from a to a⁺ negatively contributes to U_a: t_a, c_{t_a}.
- Exception: last activity of the day (home).

Utility function

An individual n derives the following utility from performing activity a, with a schedule flexibility k:

$$U_{an} = c_{an} + \theta_e \max(x_a^* - x_a, 0) + \theta_\ell \max(x_a - x_a^*, 0) + \theta_{ds} \max(\tau_a^* - \tau_a, 0) + \theta_{d\ell} \max(\tau_a - \tau_a^*, 0) + \theta_{tt} t_a + \theta_{tc} c_{t_a} + \theta_c c_a + \xi_{an},$$

where ξ_{an} is a random term with a known distribution.

EPFL

Utility function

Error terms

- Rely on simulation.
- Draw ξ_{anr} , $r = 1, \ldots, R$.
- Optimization problem for each r.
- Utility: U_{anr}.

Households

Assumptions

- Members of the households are altruist.
- Everybody makes decisions for the sake of the household.
- Objective function: sum of the utilities of each individual

Model

- Similar model as for individuals.
- Resource constraints can easily be added.

Decision variables for individual n and draw r

For each (potential) activity a:

- Activity participation: $w_{anr} \in \{0, 1\}$.
- Starting time: $x_{anr} \in \{0, \ldots, T\}$.
- Duration: $\tau_{anr} \in \{0, \ldots, T\}$.
- Scheduling: $z_{abnr} \in \{0,1\}$: 1 if activity b immediately follows a.
- Travel time: t_{anr}: travel time from a to the next activity.

Model

Objective function

Additive utility

$$\max \sum_{n} \sum_{a \in A} w_{anr} U_{anr}$$

Time budget

$$\sum_{a} \tau_{anr} + t_{anr} = T, \; \forall n, r.$$

Cost budget

$$\sum_{a} c_{a} w_{anr} + t_{c_{anr}} = B, \ \forall n, r.$$

Time windows

$$0 \le \gamma_a^- \le x_{anr} \le x_{anr} + \tau_{anr} \le \gamma_a^+ \le T, \ \forall a, n, r.$$

EPFL

Precedence constraints

$$z_{abnr} + z_{banr} \leq 1, \ \forall a, b, n, r.$$

Single successor/predecessor

$$\sum_{b \in A \setminus \{a\}} z_{abnr} = w_{anr}, \ \forall a, n, r,$$
$$\sum_{b \in A \setminus \{a\}} z_{banr} = w_{anr}, \ \forall a, n, r.$$

Travel time

$$t_{anr} = \sum_{b \in A} z_{abnr} \rho^{m_a}(s_a, s_b).$$

Consistent timing

$$(z_{abnr}-1)T \leq x_{anr}+ au_{anr}+t_{anr}-x_{bnr} \leq (1-z_{abnr})T, \ \forall a, b, n, r.$$

Mutually exclusive duplicates

$$\sum_{a\in B_k} w_{anr} = 1, \ \forall k, n, r.$$

ΞF

Interaction constraint

- If I leave home by bus, driving my car is not an option until I come back home.
- $\delta_{anr}^{car} = 1$ if car is available for activity *a*.

$$\delta_{\textit{anr}}^{\textit{car}} \geq \delta_{\textit{bnr}}^{\textit{car}} + z_{\textit{abnr}} - 1.$$

Resource constraints

- Resource (e.g. private vehicle) considered as an agent with a schedule.
- Maximum one activity at each time-step.
- Constraint: resource must be accompanied by an adult agent throughout the tour.
- Except when idling (vehicle at the parking at home).

Constraints: other examples

Participation constraints

- Participation constraints: if I drop the children off, somebody needs to pick them up later.
- Drop-off: activity a.
- Pick-up: activity b.
- Activity participation: $w_{bnr} \ge w_{anr}$
- Timing: $x_{bnr} \ge x_{anr}$.

Sequence constraints

- If I go grocery shopping I need to go back home before doing another activity.
- Shopping: activity a.
- Home: activity b.

$$z_{abnr} \geq w_{anr}$$
.

Model

Integrated framework

Mathematical programming

- Utility maximization.
- Scheduling problem.
- Rules are translated into additional constraints.
- Stochasticity is captured by simulation.

Applications

Simulation: From isolated individuals...

Simulation: To family of 2; 2 adults with no children...

Simulation: Family of 2; 2 adults with no children...

Table: Car location sequence and occupancy in the example of family of 2

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parked_out indicator	Car occupancy
Home	00:00	7:54	7:54	-	0	0
On the road	7:54	8:30	0:36	1	0	1
Work	8:30	14:30	6:00	1	1	0
On the road	14:30	14:56	0:26	1	0	1
Other2	14:56	16:27	1:31	1	1	0
On the road	16:27	17:00	0:33	1	0	1
Home	17:00	17:05	0:05	-	0	0
On the road	17:05	17:38	0:33	1&2	0	2
Other1	17:38	22:27	4:49	1&2	1	0
On the road	22:27	23:00	0:33	1&2	0	2
Home	23:00	24:00	1:00	-	0	0

Applications

Simulation: To family of 3; 2 adults and 1 child...

Simulation: Family of 3; 2 adults and 1 child

Table: Car location sequence and occupancy in the example of family of 3

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parked_out indicator	Car occupancy
Home	00:00	7:12	7:12	-	0	0
On the road	7:12	7:45	0:33	1&3	0	2
School	7:45	7:47	0:02	1	0	1
On the road	7:47	8:15	0:28	1	0	1
Work	8:15	14:15	6:00	1	1	0
On the road	14:15	14:40	0:25	1	0	1
Other2	14:40	15:22	0:42	1	1	0
On the road	15:22	16:00	0:38	1	0	1
School	16:00	16:02	0:02	1	0	1
On the road	16:02	16:33	0:31	1&3	0	2
Home	16:33	24:00	7:27	-	0	0

Distributions

Applications

Distributions

EPFL

Schedule simulation

Data set

- 2015 Mobility and Transport Microcensus [ARE 2017]
- Nationwide travel survey conducted every 5 years
- Lausanne sample: 1118 individuals
 - Students: 236 individuals
 - Workers: 618 individuals

Visual validation

Distribution of activities over the day

- Data: Swiss microcensus (validation sample).
- Literature: model with 8 parameters, borrowed from the literature.
- Generic: model with generic coefficients, estimated from data (previous slide).
- Activity-specific: model with a set of coefficients for each activity type, estimated from data (20 parameters).

Visual validation

OPTIMs

OPTimization of Individual Mobility Schedules, [Manser et al., 2022]

- Collaboration with Swiss Federal Railways.
- Integration of the optimization framework into their long-term travel demand forecasting tool (SIMBA MOBi).

Conclusions

Achievements so far

- Formulation of the model.
- Procedure for the estimation of the parameters.
- Simulation of complex and valid activity schedules.
- Simulation of complex resources constraints.
- Simulation of household coordination.
- Application to real case studies.

Challenges

- Latent preferences (desired start times, durations...)
- Validation.

Summary

- Motivation: design operational activity-based models.
- Combine the econometric and the rule-based approaches.
- Methodological contribution: use mathematical programming and simulation.
- Simulation of activity schedule: [Pougala et al., 2022a].
- Application with the Swiss Railways: [Manser et al., 2022].
- Estimation of the parameters: [Pougala et al., 2022b].
- Household interactions: under preparation.
- Main advantage of the framework: flexibility.

Summary

Long term research vision

- Synthetic population of households.
- Week-based activity scheduling.
- Real-time rescheduling.
- Applications to transportation and energy.

Outline

- 1 Introduction
- 2 Microeconomics
- 3 The logit model
- Profit optimization, facility location
- Activity-based models

Conclusion

Bibliography I

 ARE: Office fédéral de la statistique and Office fédéral du développement Territorial (2017).
Comportement de la population en matière de transports. Résultats du microrecensement mobilité et transports 2015.
Technical report, Neuchâtel, Berne.

Chapin, F. S. (1974).

Human activity patterns in the city: Things people do in time and in space, volume 13. Wiley-Interscience.

Hägerstraand, T. (1970). What about people in regional science? Papers in Regional Science.

Bibliography II

Ibeas, A., dell'Olio, L., Bordagaray, M., and de D. Ortúzar, J. (2014).
Modelling parking choices considering user heterogeneity.
Transportation Research Part A: Policy and Practice, 70:41 – 49.

 Manser, P., Haering, T., Hillel, T., Pougala, J., Krueger, R., and Bierlaire, M. (2022).
Estimating flexibility preferences to resolve temporal scheduling conflicts in activity-based modelling.
<u>Transportation</u>.
Accepted on Aug 22, 2022.

Pougala, J., Hillel, T., and Bierlaire, M. (2022a).
Capturing trade-offs between daily scheduling choices.
Journal of Choice Modelling, 43(100354).

Bibliography III

Pougala, J., Hillel, T., and Bierlaire, M. (2022b).

Oasis: Optimisation-based activity scheduling with integrated simultaneous choice dimensions.

Technical Report TRANSP-OR 221124, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.