Modeling intra-household interactions and in-home activities in activity-based models

Janody Pougala Negar Rezvany Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

March 13, 2023

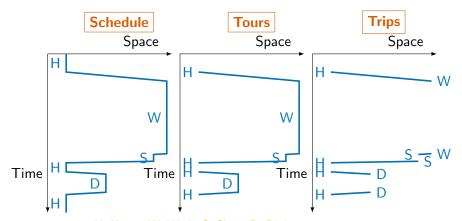
Outline

- Motivation
- 2 Assumptions
- Model
- Parameter estimation
- 6 Applications

Introduction

Complexity of modern transportation systems requires complex travel demand models.

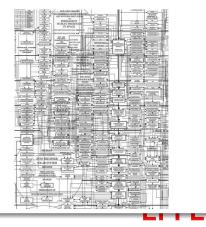
Introduction


- Travel demand is derived from activity demand.
- Activity demand is influenced by socio-economic characteristics, social interactions, cultural norms, basic needs, etc. [Chapin, 1974]
- Activity demand is constrained in space and time [Hägerstraand, 1970].

Activity-based models

Travel demand models

H: Home, W: Work, S: Shop, D: Dining out [Source: M. Ben-Akiva]



Literature

Econometric models

Rule-based models

Research question: can we combine the two?

	Econometric	Rule-based
Micro-economic theory	Х	
Parameter inference	X	
Testing/validation	X	
Joint decisions		Χ
Complex rules		Χ
Complex constraints		X

Integrated approach

Assumptions

- Individuals are utility maximizers.
- All decisions are made together.
- Decisions are subject to complex constraints and interactions.
 - Time constraint: to increase the activity duration, another activity is impacted.
 - Interaction constraints: if I leave home by bus, driving my car is not an option until I come back home.
 - Resource constraints: if my wife uses the only car in the household, driving the car is not an option for me.

Integrated approach

Integrate the econometric and the rule-based approaches

- Utility associated with activity participation, duration, etc.
- Disutility associated with traveling.
- Complex interactions and constraints are captured by rules.

Mathematical programming

- Individuals are solving an optimization problem.
- Decisions: activity participation and scheduling.
- Objective function: utilities.
- Constraints: complex rules.

Outline

- Motivation
- 2 Assumptions
- Model
- Parameter estimation
- 6 Applications

First principles

- Each individual n has a time-budget (a day).
- Each activity a considered by n is associated with a utility U_{an} .
- Individuals schedule their activities as to maximize the total utility, subject to their time-budget constraint.

Further assumptions

Individuals are time sensitive

- Have a desired <u>start time</u>, <u>duration</u> and/or end time for each activity
- Deviations from their desired times in the scheduling process decrease the utility function

Time

- Time horizon: 24 hours.
- Discretization: T time intervals.
- Trade-off between model accuracy and computational time.

Space

- Discrete and finite set S of locations, indexed by s.
- For each (s_o, s_d) , $\rho^m(s_o, s_d)$ is the travel time with mode m.
- Extensions to include route choices are possible.

Activities

Definition: Activity

An activity requires a trip to/from a given location.

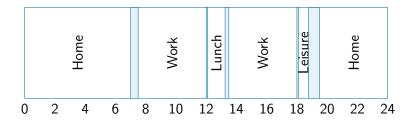
Activities

- Set A of activities.
- Location s_a.
- Transportation mode: m_a .
- Starting time x_a , $0 \le x_a \le T$.
- Duration: $\tau_a \geq 0$.
- Feasible time interval: $[\gamma_a^-, \gamma_a^+]$ (e.g. opening hours).

Activities

Modeling location choice

- "Dinner at home" and "dinner at a restaurant"
- are considered two different activities.
- Impose that maximum one of them is selected.


Modeling mode choice

- Having dinner and coming back by car or taxi
- are considered two different activities.
- Impose that maximum one of them is selected.

Scheduling

Categories

- [Castiglione et al., 2014]: mandatory, maintenance, discretionary.
- Flexible, somewhat flexible, not flexible.

Category

Activities that share the same preference profile.

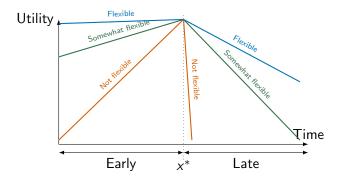
Preferences

Preferences

- desired starting time x_a*
- desired duration τ_a^* .

Penalties

- Starting early [Small, 1982]: $\theta_e \max(x_a^* - x_a, 0).$
- Starting late [Small, 1982]: $\theta_{\ell} \max(x_a - x_a^*, 0).$
- Shorter activity: $\theta_{ds} \max(\tau_a^* \tau_a, 0)$.
- Longer activity: $\theta_{d\ell} \max(\tau_a \tau_a^*, 0)$.



Preferences

Parameters depend on the category type

Disutility of travel

Traveling is part of the activity

- Travel (time and cost) from a to a^+ negatively contributes to U_a : t_a , c_{t_a} .
- Exception: last activity of the day (home).

Utility function

An individual n derives the following utility from performing activity a, with a schedule flexibility k:

$$\begin{split} U_{an} &= c_{an} + \theta_e \max(x_a^* - x_a, 0) \\ &+ \theta_\ell \max(x_a - x_a^*, 0) \\ &+ \theta_{ds} \max(\tau_a^* - \tau_a, 0) \\ &+ \theta_{d\ell} \max(\tau_a - \tau_a^*, 0) \\ &+ \theta_{tt} t_a + \theta_{tc} c_{t_a} \\ &+ \theta_c c_a + \xi_{an}, \end{split}$$

where ξ_{an} is a random term with a known distribution.

Utility function

Error terms

- Rely on simulation.
- Draw ξ_{anr} , $r = 1, \ldots, R$.
- Optimization problem for each r.
- Utility: Uanr.

Households

Assumptions

- Members of the households are altruist.
- Everybody makes decisions for the sake of the household.
- Objective function: sum of the utilities of each individual

Model

- Similar model as for individuals.
- Resource constraints can easily be added.

Outline

- Motivation
- 2 Assumptions
- Model
- Parameter estimation
- 6 Applications

Decision variables for individual *n* and draw *r*

For each (potential) activity a:

- Activity participation: $w_{anr} \in \{0, 1\}$.
- Starting time: $x_{anr} \in \{0, \dots, T\}$.
- Duration: $\tau_{anr} \in \{0, \ldots, T\}$.
- Scheduling: $z_{abnr} \in \{0,1\}$: 1 if activity *b* immediately follows *a*.
- Travel time: t_{anr}: travel time from a to the next activity.

Objective function

Additive utility

$$\max \sum_n \sum_{a \in A} w_{anr} U_{anr}$$

Time budget

$$\sum_{a} \tau_{anr} + t_{anr} = T, \ \forall n, r.$$

Cost budget

$$\sum_{a} c_{a} w_{anr} + t_{c_{anr}} = B, \ \forall n, r.$$

Time windows

$$0 \le \gamma_a^- \le x_{anr} \le x_{anr} + \tau_{anr} \le \gamma_a^+ \le T, \ \forall a, n, r.$$

Precedence constraints

$$z_{abnr} + z_{banr} \leq 1, \ \forall a, b, n, r.$$

Single successor/predecessor

$$\sum_{b \in A \setminus \{a\}} z_{abnr} = w_{anr}, \ \forall a, n, r, \ \sum_{b \in A \setminus \{a\}} z_{banr} = w_{anr}, \ \forall a, n, r.$$

Travel time

$$t_{anr} = \sum_{b \in A} z_{abnr} \rho^{m_a}(s_a, s_b).$$

Consistent timing

$$(z_{abnr}-1)T \le x_{anr}+\tau_{anr}+t_{anr}-x_{bnr} \le (1-z_{abnr})T, \ \forall a,b,n,r.$$

Mutually exclusive duplicates

$$\sum_{\mathbf{a}\in B_k}w_{\mathbf{a}\mathbf{n}\mathbf{r}}=1,\ \forall k,\mathbf{n},\mathbf{r}.$$

Interaction constraint

- If I leave home by bus, driving my car is not an option until I come back home.
- $\delta_{anr}^{car} = 1$ if car is available for activity a.

$$\delta_{anr}^{car} \geq \delta_{bnr}^{car} + z_{abnr} - 1.$$

Resource constraints

- Resource (e.g. private vehicle) considered as an agent with a schedule.
- Maximum one activity at each time-step.
- Constraint: resource must be accompanied by an adult agent throughout the tour.
- Except when idling (vehicle at the parking at home).

Constraints: other examples

Participation constraints

- Participation constraints: if I drop the children off, somebody needs to pick them up later.
- Drop-off: activity a.
- Pick-up: activity b.
- Activity participation: $w_{bnr} \ge w_{anr}$
- Timing: $x_{bnr} \ge x_{anr}$.

Sequence constraints

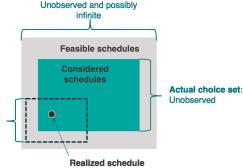
- If I go grocery shopping I need to go back home before doing another activity.
- Shopping: activity a.
- Home: activity b.

Integrated framework

Mathematical programming

- Utility maximization.
- Scheduling problem.
- Rules are translated into additional constraints.
- Stochasticity is captured by simulation.

Outline


- Motivation
- Assumptions
- Model
- Parameter estimation
- 6 Applications

Challenges

- The universal choice set cannot be enumerated.
- Traditional maximum likelihood estimators of parameters cannot easily be derived.

Estimation choice set: sample of feasible schedules generated for estimation purposes

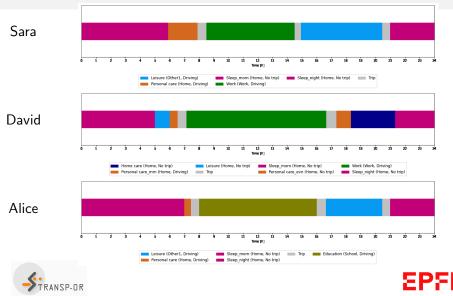
Methodology

Choice set generation

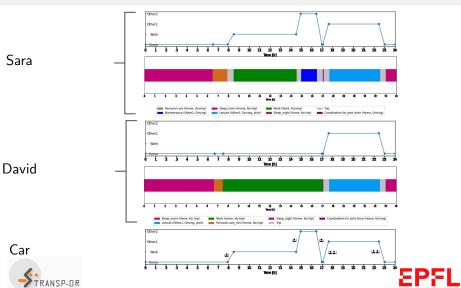
- Importance sampling with Metropolis-Hastings algorithm
- Bias the sampling towards "good" or "meaningful" schedule.

Parameter estimation

- Maximum likelihood estimation of a random utility model.
- Choice set contains only feasible schedules for individual n.
- Constraints can be ignored for inference.
- Need for correction for importance sampling [Guevara and Ben-Akiva, 2013].


Outline

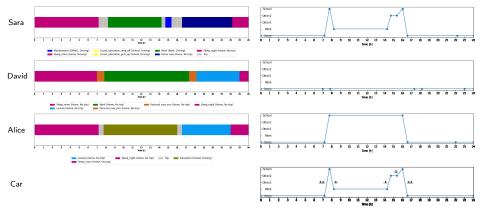
- Motivation
- Assumptions
- Model
- Parameter estimation
- 6 Applications



Simulation: From isolated individuals...

Simulation: To family of 2; 2 adults with no children...

Simulation: Family of 2; 2 adults with no children...


Table: Car location sequence and occupancy in the example of family of 2

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parked_out indicator	Car occupancy
Home	00:00	7:54	7:54	-	0	0
On the road	7:54	8:30	0:36	1	0	1
Work	8:30	14:30	6:00	1	1	0
On the road	14:30	14:56	0:26	1	0	1
Other2	14:56	16:27	1:31	1	1	0
On the road	16:27	17:00	0:33	1	0	1
Home	17:00	17:05	0:05	-	0	0
On the road	17:05	17:38	0:33	1&2	0	2
Other1	17:38	22:27	4:49	1&2	1	0
On the road	22:27	23:00	0:33	1&2	0	2
Home	23:00	24:00	1:00	-	0	0

Simulation: To family of 3; 2 adults and 1 child...

Simulation: Family of 3; 2 adults and 1 child

Table: Car location sequence and occupancy in the example of family of 3

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parked_out indicator	Car occupancy
Home	00:00	7:12	7:12	-	0	0
On the road	7:12	7:45	0:33	1&3	0	2
School	7:45	7:47	0:02	1	0	1
On the road	7:47	8:15	0:28	1	0	1
Work	8:15	14:15	6:00	1	1	0
On the road	14:15	14:40	0:25	1	0	1
Other2	14:40	15:22	0:42	1	1	0
On the road	15:22	16:00	0:38	1	0	1
School	16:00	16:02	0:02	1	0	1
On the road	16:02	16:33	0:31	1&3	0	2
Home	16:33	24:00	7:27	-	0	0

Distributions

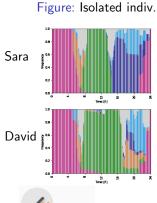
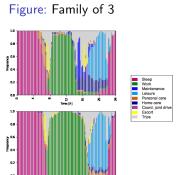
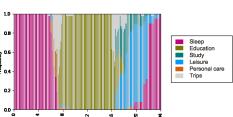



Figure: Family of 2

Distributions

0.B


0.2

Alice

Figure: Isolated individual

M. Hraquency

Figure: Family of 3

Schedule simulation

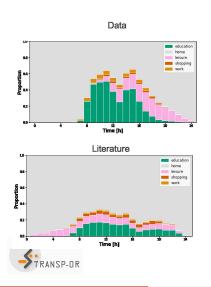
Data set

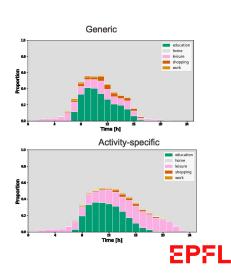
- 2015 Mobility and Transport Microcensus [ARE 2017]
- Nationwide travel survey conducted every 5 years
- Lausanne sample: 1118 individuals
 - Students: 236 individuals
 - Workers: 618 individuals

Example: model 1

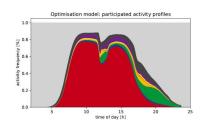
		Param.	Rob.	Rob.	Rob.
	Parameter	estimate	std err	t-stat	<i>p</i> -value
1	F early	-0.175	0.12	-1.46	0.145
2	F late	-0.333	0.14	-2.38	0.0171
3	F long	-0.105	0.0722	-1.45	0.146
4	F short	-0.114	0.194	-0.585	0.559
5	NF early	-1.14	0.367	-3.10	0.00191
6	NF late	-0.829	0.229	-3.61	0.0003
7	NF long	-1.20	0.393	-3.05	0.00231
8	NF short	-1.19	0.468	-2.54	0.0011
9	$ASC_{L}Education$	16.0	2.46	6.49	8.63e-11
10	ASC_Leisure	8.81	1.7	5.17	2.28e-07
11	ASC_Shopping	6.85	1.80	3.80	0.000146
. 12	$ASC_{-}Work$	16.0	2.58	6.18	6.57e-1 0

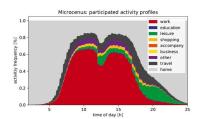
Visual validation


Distribution of activities over the day


- Data: Swiss microcensus (validation sample).
- Literature: model with 8 parameters, borrowed from the literature.
- Generic: model with generic coefficients, estimated from data (previous slide).
- Activity-specific: model with a set of coefficients for each activity type, estimated from data (20 parameters).

Visual validation





OPTIMs

OPTimization of Individual Mobility Schedules, [Manser et al., 2021a]

- Collaboration with Swiss Federal Railways.
- Integration of the optimization framework into their long-term travel demand forecasting tool (SIMBA MOBi).

Conclusions

Achievements so far

- Formulation of the model.
- Procedure for the estimation of the parameters.
- Simulation of complex and valid activity schedules.
- Simulation of complex resources constraints.
- Simulation of household coordination.
- Application to real case studies.

Challenges

- Latent preferences (desired start times, durations...)
- Validation.

Summary

- Motivation: design operational activity-based models.
- Combine the econometric and the rule-based approaches.
- Methodological contribution: use mathematical programming and simulation.
- Simulation of activity schedule: [Pougala et al., 2022a].
- Application with the Swiss Railways: [Manser et al., 2021b].
- Estimation of the parameters: [Pougala et al., 2022b].
- Household interactions: under preparation.
- Main advantage of the framework: flexibility.

Summary

Long term research vision

- Synthetic population of households.
- Week-based activity scheduling.
- Real-time rescheduling.
- Applications to transportation and energy.

Bibliography I

Comportement de la population en matière de transports. Résultats du microrecensement mobilité et transports 2015.

Technical report, Neuchâtel, Berne.

Castiglione, J., Bradley, M., and Gliebe, J. (2014). Activity-Based Travel Demand Models: A Primer. Transportation Research Board, Washington, D.C.

Chapin, F. S. (1974).

Human activity patterns in the city: Things people do in time and in space, volume 13.

Wiley-Interscience.

Bibliography II

- Guevara, C. A. and Ben-Akiva, M. E. (2013).
 Sampling of alternatives in logit mixture models.
 Transportation Research Part B: Methodological, 58:185–198.
- Hägerstraand, T. (1970).
 What about people in regional science?
 Papers in Regional Science.
- Manser, P., Haering, T., Hillel, T., Pougala, J., Krueger, R., and Bierlaire, M. (2021a).

Resolving temporal scheduling conflicts in activity-based modelling. Technical Report TRANSP-OR 211209, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Bibliography III

Manser, P., Haering, T., Hillel, T., Pougala, J., Krueger, R., and Bierlaire, M. (2021b).

Resolving temporal scheduling conflicts in activity-based modelling. Technical Report TRANSP-OR 211209, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Pougala, J., Hillel, T., and Bierlaire, M. (2022a). Capturing trade-offs between daily scheduling choices. Journal of Choice Modelling, 43(100354).

Accepted on Mar 19, 2022.

Bibliography IV

Oasis: Optimisation-based activity scheduling with integrated simultaneous choice dimensions.

Technical Report TRANSP-OR 221124, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Small, K. A. (1982).

The scheduling of consumer activities: work trips.

American Economic Review.