Hybrid Simulator for Capturing Dynamics of Synthetic Populations

Marija Kukic^{*} Salim Benchelabi Michel Bierlaire

28 September, 2023

IEEE ITSC 2023

Capturing Dynamics

ITSC 2023

Outline

Motivation

Literature review

3 Contribution

5 Results: Case study of Switzerland

6 Conclusion and Future Work

Synthetic population in Transportation: Why?

Real Data

- High cost of data collection.
- Lack of representativity.
- Data privacy constraints.

Synthetic Data

- Open source.
- Bias correction.
- Privacy preservation.

Synthetic Population = tabular data on individuals and households

Existing Generation Methods

- Statistical Reconstruction ^[1, 2]
- Ombinatorial Optimization [3]
- Statistical learning
 Simulation methods ^[4, 5]
 Machine Learning methods^[6, 7, 8]

э

Outdated sample

э

イロト 不得 トイヨト イヨト

Complicated and Repetitive

Outdated sample

3

イロト 不得 トイヨト イヨト

Complicated and Repetitive

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

2 Literature review

- 3 Contribution
- 4 Methodology
- 5 Results: Case study of Switzerland
- 6 Conclusion and Future Work

Projection

Dynamic Projection^[9, 10]
 Simulate life events

Re-sampling^[11] Adjust marginals

Step 1: Generation Step 2: Projection

э

(1日) (1日) (1日)

Literature Gaps

Dynamic projection

- Evolves population.
- Heterogeneous sample.

Re-sampling

- Copying data instead of evolving.
- Lack of heterogenity over time.

• • = • • = •

Literature Gaps

Dynamic projection

- Evolves population.
- Heterogeneous sample.
- Propagation of the generation bias.
- Increase of the error over time.
- Not robust to the unusual events.

Re-sampling

- Copying of data instead of evolving.
- Lack of heterogenity over time.
- Can achieve a perfect fit.

Outline

Literature review

5 Results: Case study of Switzerland

6 Conclusion and Future Work

13

Step 1: Generation Step 2: Dynamic Projection

Model-based approach

・ロト・西ト・ヨト・ヨー うくぐ

Step 1: Generation Step 2: Dynamic Projection

Model-based and Data-driven approach

→ < ∃ →</p>

Step 1: Generation Step 2: Dynamic Projection Step 4: Validation

Model-based and Data-driven approach

イロト 不得下 イヨト イヨト

Outline

2 Literature review

3 Contribution

5 Results: Case study of Switzerland

6 Conclusion and Future Work

IEEE ITSC 2023

Capturing Dynamics

▲ロト ▲聞 ト ▲ 国 ト ▲ 国 ト の Q ()~

Step 1: Generation

Markov Chain Monte Carlo Simulation. [5]

Synthetic individuals $X = (X_{age}, X_{emp}, X_{gender})$.

Bootstrap and convergence monitoring.

Step 2: Dynamic projection

When disaggregated data are not available.

Simulate events: birth, death and migration.

Simulate impact on age, gender and employment.

Step 3: Re-sampling

When disaggregated data are available.

Compare age marginals with real most recent data.

Add or delete individuals to achieve desired fit.

Step 4: Validation

Compare marginal and sub-distributions with real data.

Statistics (e.g., SRMSE) and Visualization.

Outline

1 Motivation

2 Literature review

3 Contribution

5 Results: Case study of Switzerland

6 Conclusion and Future Work

э

イロト 不得 トイヨト イヨト

Generation and validation of synthetic sample - 2010

Reference data: weighted MTMC 2010, 2015, 2021 [OFS]

Dynamic Projection (2010 - 2014) and Re-sampling (2015)

Rates on birth, death and migration [OFS]

IEEE ITSC 2023

Capturing Dynamics

э

Comparison of projection and hybrid approach - 2021

	Age $\cdot 10^{-2}$	Employment $\cdot 10^{-2}$	Gender $\cdot 10^{-2}$	Average $\cdot 10^{-2}$
Hybrid approach 2010 - 2021	7.35	5.26	0.61	4.41
Dynamic Projection 2010 - 2021	8.28	7.13	0.67	5.36
Table: SRMSE of projected samples against real sample 2021				

Comparison of Dynamic Projection and Hybrid approach - 2021

	Age $\cdot 10^{-2}$	$\underset{\cdot 10^{-2}}{Employment}$	Gender $\cdot 10^{-2}$	Average $\cdot 10^{-2}$
Dynamic Projection 2015 to 2021	5.76	3.71	0.48	3.31
Hybrid approach 2010 - 2021	7.35	5.26	0.61	4.41
Dynamic Projection 2010 - 2021	8.28	7.13	0.67	5.36

Table: SRMSE of projected samples against real sample 2021

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

1 Motivation

2 Literature review

3 Contribution

5 Results: Case study of Switzerland

6 Conclusion and Future Work

IEEE ITSC 2023

Capturing Dynamics

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Conclusion and Future Work

Hybrid approach provides:

- Maintenance of synthetic samples without regenerating.
- Access to up-to-date data and making use of the past.
- Trade-off between accuracy and efficiency.

Future work

- Expand from individuals to households.
- Re-sample other attributes than age.
- Comparison with re-generation based on several criteria.

Thank you! Questions?

Contact: marija.kukic@epfl.ch

э

Problems of projection methods

- Arbitrarily chosen generators.
- Limited number of considered attributes.
- Lack of validation.

	Age $\cdot 10^{-2}$	Employment $\cdot 10^{-2}$	Gender $\cdot 10^{-2}$	Average $\cdot 10^{-2}$
Hybrid simulator 2010 - 2021	7.35	5.26	0.61	4.41
Dynamic projection 2010 - 2021	8.28	7.13	0.67	5.36
Re-sampling 2010 - 2021	1.69	4.02	1.76	2.49

Table: First order SRMSE between the real sample from 2021 and projected synthetic samples

3

イロト 不得 トイヨト イヨト

	Age, Employment, Gender
Hybrid simulator 2010-2021	0.2
Resampling 2010-2021	0.33

Table: Third order SRMSE between the real sample from 2021 and projected synthetic samples

э

イロト 不得 トイヨト イヨト

Algorithm 1 Dynamic projection

- 1: function DYNAMIC_PROJECTION(synthetic_sample, t_0 , t_{end})
- 2: predictive_sample = synthetic_sample
- 3: for $i = t_0$ to t_{end} do
- 4: *increment_age*(predictive_sample);
- 5: $add_children$ (predictive_sample, i); \triangleright Birth rates
- 6: $remove_individuals$ (predictive_sample, i); \triangleright Death rates
- 7: $add_individuals$ (predictive_sample, i); \triangleright Migration rates
- 8: *remove_individuals*(predictive_sample,i);
- 9: end for
- 10: *draw_employment*(predictive_sample);
- 11: end function ▷ Return the updated sample

・ロット (雪) (モリント (日)

Algorithm 2 Resampling procedure

- 1: function RESAMPLE(a,b,num,threshold)
- a array of frequency counts per each age category in reference 2: sample
- 3: b - array of frequency counts per each age category in projected sample
- 4: num - total number of age categories
- for i = 1 to num do 5:

8:

9. 10:

11.

12:

13.

14. 15:

16: 17:

18:

19:

20:

21.

- if abs(a[i] b[i]) > threshold then 6: 7:
 - if (a[i] b[i]) < 0 then
 - $nb_of_observation = abs(a[i] b[i])$ for i = 1 to nb_of_observation do
 - randomly sample a person of the age i
 - remove a selected person from the projected sample

end for

else

 $nb_{-}of_{-}observation = abs(a[i] - b[i])$ for j = 1 to nb_of_observation do randomly sample a person of the age iadd the selected person to the projected sample end for end if end if end for 22: end function ▷ Return the updated sample

Capturing Dynamics