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Introduction

Travel demand models

Supply = infrastructure

Demand = behavior, choices

Congestion = mismatch
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Introduction

Travel demand models

Usually in OR:

optimization of the supply

for a given (fixed) demand
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Introduction

Aggregate demand

Homogeneous population

Identical behavior

Price (P) and quantity (Q)

Demand functions: P = f (Q)

Inverse demand: Q = f −1(P)
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Introduction

Disaggregate demand

Heterogeneous population

Different behaviors

Many variables:

Attributes: price, travel time,
reliability, frequency, etc.
Characteristics: age, income,
education, etc.

Complex demand/inverse
demand functions.
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Introduction

Examples in mobility

Discrete choices

Choice of activity.

Choice of destination.

Choice of mode of transportation.

Choice of departure time.

Choice of path.
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Foundations: microeconomics
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Foundations: microeconomics

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her
outcome

Behavioral assumptions

The decision maker solves an optimization problem.

The analyst needs to define

the decision variables,
the objective function,
the constraints.
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Foundations: microeconomics Microeconomic consumer theory

Microeconomic consumer theory

Continuous choice set

Consumption bundle:

q =




q1
...
qL


 ; p =




p1
...
pL




Budget constraint

pTq =
L∑

ℓ=1

pℓqℓ ≤ I .
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Foundations: microeconomics Preferences

Preferences

Operators ≻, ∼, and %

qa ≻ qb: qa is preferred to qb,

qa ∼ qb: indifference between qa and qb,

qa % qb: qa is at least as preferred as qb.

Rationality

Completeness: for all bundles a and b,

qa ≻ qb or qa ≺ qb or qa ∼ qb.

Transitivity: for all bundles a, b and c ,

if qa % qb and qb % qc then qa % qc .

“Continuity”: if qa is preferred to qb and qc is arbitrarily “close” to
qa, then qc is preferred to qb.
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Foundations: microeconomics Utility maximization

Utility

Utility function

Parameterized function:

Ũ = Ũ(q1, . . . , qL; θ) = Ũ(Q; θ)

Consistent with the preference indicator:

Ũ(qa; θ) ≥ Ũ(qb; θ)

is equivalent to
qa % qb.

Unique up to an order-preserving transformation
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Foundations: microeconomics Utility maximization

Optimization

Optimization problem

max
q

Ũ(q; θ)

subject to
pTq ≤ I , q ≥ 0.

Demand function

Solution of the optimization problem.

Quantity as a function of prices and budget.

q∗ = f (I , p; θ)
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Foundations: microeconomics Utility maximization

Microecomomic theory

How does it work for discrete choices?
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Foundations: microeconomics Utility maximization

Microeconomic theory of discrete goods

Expanding the microeconomic framework

Continuous goods

and discrete goods

The consumer

selects the quantities of continuous goods: q = (q1, . . . , qL)

chooses an alternative in a discrete choice set i = 1, . . . , j , . . . , J

discrete decision vector: (w1, . . . ,wJ), wj ∈ {0, 1},
∑

j wj = 1.
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Foundations: microeconomics Utility maximization

Utility maximization

Utility

Ũ(q,w , z̃Tw ; θ)

q: quantities of the continuous good

w : discrete choice

z̃T = (z̃1, . . . , z̃i , . . . , z̃J) ∈ R
K×J : K attributes of the J alternatives

z̃Tw ∈ R
K : attributes of the chosen alternative

θ: vector of parameters
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Foundations: microeconomics Utility maximization

Utility maximization

Optimization problem

max
q,w

Ũ(q,w , z̃Tw ; θ)

subject to
pTq + cTw ≤ I∑

j wj = 1

wj ∈ {0, 1}, ∀j .

where cT = (c1, . . . , ci , . . . , cJ) contains the cost of each alternative.

Solving the problem

Mixed integer optimization problem

No optimality condition

Impossible to derive demand functions directly
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Foundations: microeconomics Utility maximization

Solving the problem

Step 1: condition on the choice of the discrete good

Fix the discrete good, that is select a feasible w .

The problem becomes a continuous problem in q.

Conditional demand functions can be derived:

qℓ|w = f (I − cTw , p, z̃Tw ; θ),

or, equivalently, for each alternative i ,

qℓ|i = f (I − ci , p, z̃i ; θ).

I − ci is the income left for the continuous goods, if alternative i is
chosen.

If I − ci < 0, alternative i is declared unavailable and removed from
the choice set.
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Foundations: microeconomics Utility maximization

Solving the problem

Conditional indirect utility functions

Substitute the demand functions into the utility:

Ui = U(I − ci , p, z̃i ; θ) for all i ∈ C.

Step 2: Choice of the discrete good

max
w

U(I − cTw , p, z̃Tw ; θ)

Enumerate all alternatives.

Compute the conditional indirect utility function Ui .

Select the alternative with the highest Ui .

Note: no income constraint anymore.
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Foundations: microeconomics Utility maximization

Simple example: mode choice

Attributes

Attributes
Alternatives Travel time (t) Travel cost (c)

Car (1) t1 c1
Bus (2) t2 c2

Utility

Ũ = Ũ(w1,w2),

where we impose the restrictions that, for i = 1, 2,

wi =

{
1 if travel alternative i is chosen,
0 otherwise;

and that only one alternative is chosen: w1 + w2 = 1.
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Foundations: microeconomics Utility maximization

Simple example: mode choice

Utility functions

U1 = −βtt1 − βcc1,
U2 = −βtt2 − βcc2,

where βt > 0 and βc > 0 are parameters.

Equivalent specification

U1 = −(βt/βc)t1 − c1 = −βt1 − c1
U2 = −(βt/βc)t2 − c2 = −βt2 − c2

where β > 0 is a parameter.

Choice

Alternative 1 is chosen if U1 ≥ U2.

Ties are ignored.
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Foundations: microeconomics Utility maximization

Simple example: mode choice

Choice

Alternative 1 is chosen if

−βt1 − c1 ≥ −βt2 − c2

or

−β(t1 − t2) ≥ c1 − c2

Alternative 2 is chosen if

−βt1 − c1 ≤ −βt2 − c2

or

−β(t1 − t2) ≤ c1 − c2

Dominated alternative

If c2 > c1 and t2 > t1, U1 > U2 for any β > 0

If c1 > c2 and t1 > t2, U2 > U1 for any β > 0

Michel Bierlaire (EPFL) Mathematical Modeling of Human Behavior June 14, 2022 22 / 43



Foundations: microeconomics Utility maximization

Simple example: mode choice

Trade-off

Assume c2 > c1 and t1 > t2.

Is the traveler willing to pay the extra cost c2 − c1 to save the extra
time t1 − t2?

Alternative 2 is chosen if

−β(t1 − t2) ≤ c1 − c2

or

β ≥
c2 − c1

t1 − t2

β is called the willingness to pay or value of time
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Foundations: microeconomics Utility maximization

Simple example: mode choice

c1 + βt1 =
c2 + βt2

t1 − t2

c1 − c2

Alt. 1 is dominant

Alt. 2 is dominant

Alt. 2 is preferred

1 is preferred

β
1

Alt. 1 is chosen
Alt. 2 is chosen
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Foundations: microeconomics Probabilistic choice theory

Behavioral validity of the utility maximization?

Assumptions

Decision-makers

are able to process information

have perfect discrimination power

have transitive preferences

are perfect maximizer

are always consistent

Relax the assumptions

Use a probabilistic approach: what is the probability that alternative i is
chosen?
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Foundations: microeconomics The random utility model

Random utility model

Probability model

P(i |Cn) = Pr(Uin ≥ Ujn, ∀j ∈ Cn),

Random utility

Uin = Vin + εin = βTXin + εin.

Similarity with linear regression

Y = βTX + ε

Here, U is not observed. Only the choice is observed.
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Foundations: microeconomics The random utility model

Derivation

Joint distributions of εn

Assume that εn = (ε1n, . . . , εJnn) is a multivariate random variable

with CDF
Fεn(ε1, . . . , εJn)

and pdf

fεn(ε1, . . . , εJn) =
∂JnF

∂ε1 · · · ∂εJn
(ε1, . . . , εJn).

The random utility model: Pn(i |Cn) =

∫ +∞

ε=−∞

∂Fε1n,ε2n,...,εJn
∂εi

(. . . ,Vin − V(i−1)n + ε, ε,Vin − V(i+1)n + ε, . . .)dε
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Foundations: microeconomics The random utility model

Random utility model

Logit model

The general formulation is complex.

Assuming that εin are i.i.d. EV(0, µ), we have the logit model:

Pn(i |Cn) =
eµVin

∑
j∈Cn

eµVjn
.
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Using choice models in optimization

Outline

1 Introduction

2 Foundations: microeconomics

3 Using choice models in optimization

Michel Bierlaire (EPFL) Mathematical Modeling of Human Behavior June 14, 2022 29 / 43



Using choice models in optimization

A simple example

Data

C: set of movies

Population of N individuals

Utility function:
Uin = βinpin + f (zin) + εin

Decision variables

What movies to propose? yin

What price? pin

Michel Bierlaire (EPFL) Mathematical Modeling of Human Behavior June 14, 2022 30 / 43



Using choice models in optimization

Profit maximization

Data

Two alternatives: my theater (m) and
the competition (c)

We assume an heterogenous
population of N individuals

Ucn = 0 + εcn

Umn = βnpm + cmn + εmn

βn < 0

Logit model: εmn i.i.d. EV
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Using choice models in optimization

Heterogeneous population

Two groups in the population

Umn = βnpm + cmn + εmn

n = 1: Young fans:
2/3

β1 = −10, cm1 = 3

n = 2: Others: 1/3

β2 = −0.9, cm2 = 0
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Using choice models in optimization

Demand

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

D
em

an
d

Price

Total demand
Young fans

Others

Michel Bierlaire (EPFL) Mathematical Modeling of Human Behavior June 14, 2022 33 / 43



Using choice models in optimization

Demand and revenues
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Using choice models in optimization

Optimization

Profit maximization

Non linear

Non convex

Solution: mathematical programming

Random term: simulation.

Utility maximization of customers: constraints.
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Using choice models in optimization

Utility

Variables

Uinr utility

zinr =

{
Uinr if yin = 1
ℓnr if yin = 0

discounted utility

(ℓnr smallest lower bound)

Constraint: utility

Uinr =

Vin︷ ︸︸ ︷
βinpin + qd(xd)+ξinr ∀i , n, r
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Using choice models in optimization

Utility (ctd)

Constraints: discounted utility

ℓnr ≤ zinr ∀i , n, r

zinr ≤ ℓnr +Minryin ∀i , n, r

Uinr −Minr (1− yin) ≤ zinr ∀i , n, r

zinr ≤ Uinr ∀i , n, r
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Using choice models in optimization

Choice

Variables

Unr = max
i∈C

zinr

winr =

{
1 if zinr = Unr

0 otherwise
choice

Constraints

zinr ≤ Unr ∀i , n, r

Unr ≤ zinr +Mnr (1− winr ) ∀i , n, r
∑

i

winr = 1 ∀n, r

winr ≤ yin ∀i , n, r
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Using choice models in optimization

Profit maximization problem

MILP

We avoid the non convex formulation of the logit model.

Most constraints are linear.

Nonlinear constraints are easy to linearize.

No specific assumption of the distribution of εin thanks to simulation.

Very large optimization problems.

Current research: decomposition methods (Benders,
column-generation, etc.)
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Using choice models in optimization

Summary

Microeconomics
in a nutshell

Logit model

Profit maximization Activity-based models

Optimization
Discrete choice

Teaching

Research
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Using choice models in optimization
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