

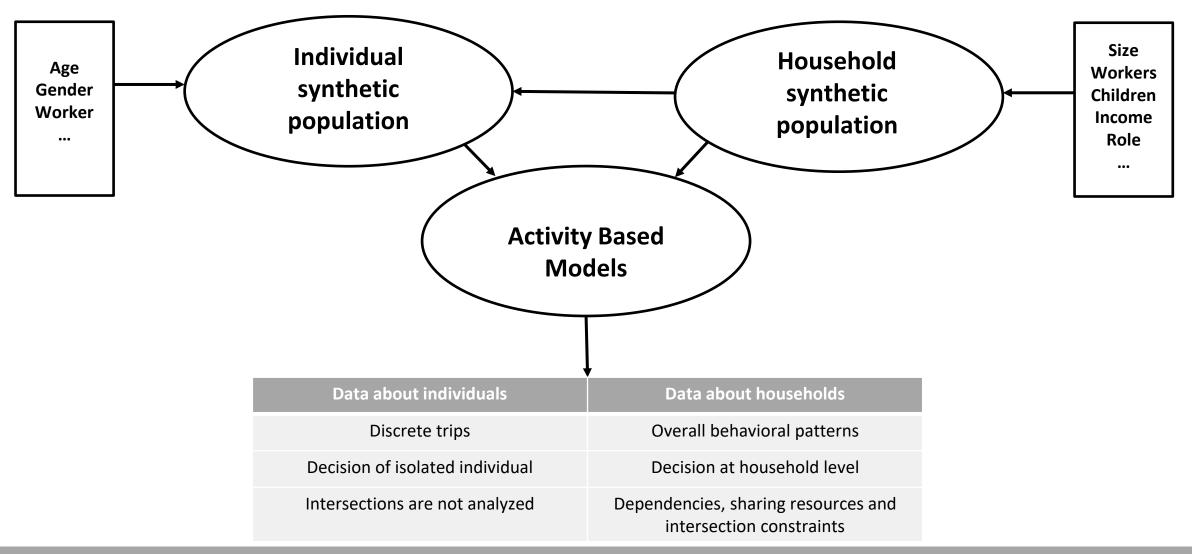
Population synthesis at the level of households

One-step simulator for synthetic household generation

Marija Kukic Supervisor: Michel Bierlaire 27.04.2022. Workshop EPFL - ETHZ

Outline

- Motivation
- Literature review
- Simulation approach for synthetic generation
- One-stage simulator for synthetic household generation
- Results and validation
- Divide and conquer Gibbs Sampler
- Conclusion


What are synthetic data and why do we need them?

Data collections: surveys, census, mobile phone tracking...

- Why cannot we use those data?
 - High cost of data collection
 - => reduce sample size
 - => lack of representativity
 - Privacy preservation => data unavailability

What is a solution? => Let's generate synthetic data!

Why do we need synthetic data in transportation?

Literature review: From synthetic individuals to synthetic households

	GENERATION OF INDIVIDUALS	GENERATION OF HOUSEHOLDS	ASSOCIATIONS BETWEEN INDIVIDUALS & HOUSHEOLDS
Iterative Proportional Fitting (IPF)	1996 Beckman et al. Creating synthetic baseline populations	2007 Arentze et al. Creating synthetic household populations	2009 <i>Ye et al</i> . Iterative Proportional Updating
Simulation techniques (MCMC)	2013 Farooq et al. Simulation based population synthesis		2014, Anderson et al., Associations Generation 2015, Casati et al., Hierarchical MCMC
Machine Learning techniques	2014, Goodfellow et al. Generative Adversarial Network 2018, Xu et al. Tabular Generative Adversarial Networks 2019, Borysov et al., Variational Autoencoder 2020, Badu – Marfo et al., Composite Travel Generative Adversarial Networks 2022, Lederrey et al., DATGAN: Integrating expert knowledge into deep learning for synthetic tabular data		2022

From synthetic individuals to synthetic households

Simulation methods

Model driven ->

allows control within the generation process

Hierarchy generation

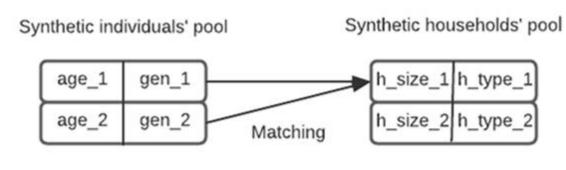
-> accuracy of marginals and realistic rows

Curse of dimensionality-> the accuracy and efficiency drops with high dimensional datasets

Machine Learning methods

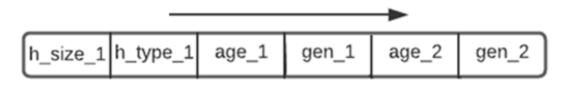
Good correlation capture on high dimensional datasets

Doesn't handle hierarchies ->


marginals might seem
accurate but
unrealistic rows

Data driven-> black box solutions

Gaps in the literature – Why do we need one step simulator?


	METHODS
TWO – STAGE PROCESS	Hierarchical MCMC (hMCMC) Assuming independence between individuals
ONE – STAGE PROCESS	One-step simulator for synthetic household generation

Existing "two step" methodology

(hsize1, age_1, gen_1, age_2, gen_2) = (2, 80, M, 8, M)

Proposed "one step" methodology

(hsize1, age_1, gen_1, age_2, gen_2) = (2, 80, M, 78, F)

Research questions

One-step simulator for synthetic household generation

How to design a methodology for creation of synthetic households in **one – stage** process?

How much **control** we can embed into generation process compared to other existing methodologies?

How to deal with the "curse of dimensionality"?

Existing approach - iMCMC

Simulation based population synthesis:

Markov Chain Monte Carlo process

Sampling methods:

Gibbs Sampling

Input preparation:

1. Conditional distributions constructed from:

Data

Models

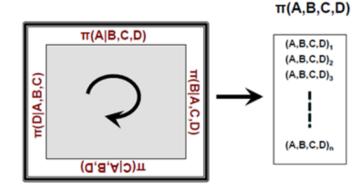
Assumptions

Assumptions:

• Given A, B is uniform across C, D:

$$\pi(A|B) = \pi(A|B,C,D)$$

Ge	nder		
Male	Female	Total	Target
11057	4069	15126	15012
21228	8335	29563	29567
6415	13762	20177	20234
11209	23925	35134	35187
49909	49932		
50091	50155		
32285	12404		
32144	12435		
	Male 11057 21228 6415 11209 49909 50091 32285	11057 4069 21228 8335 6415 13762 11209 23925 49909 49932 50091 50155 32285 12404	Male Female Total 11057 4069 15126 21228 8335 29563 6415 13762 20177 11209 23925 35134 49909 49932 50091 50155 32285 12404

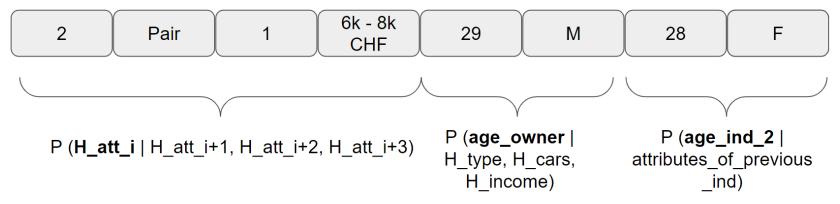

Condon

 $\pi(A,B,C,D)$??

 $\pi(A|B,C,D)$ $\pi(B|A,C,D)$

 $\pi(C|A,B,D)$

 $\pi(D|A,B,C)$



Contributions – Modeling part

Generalized approach:

Specific example:

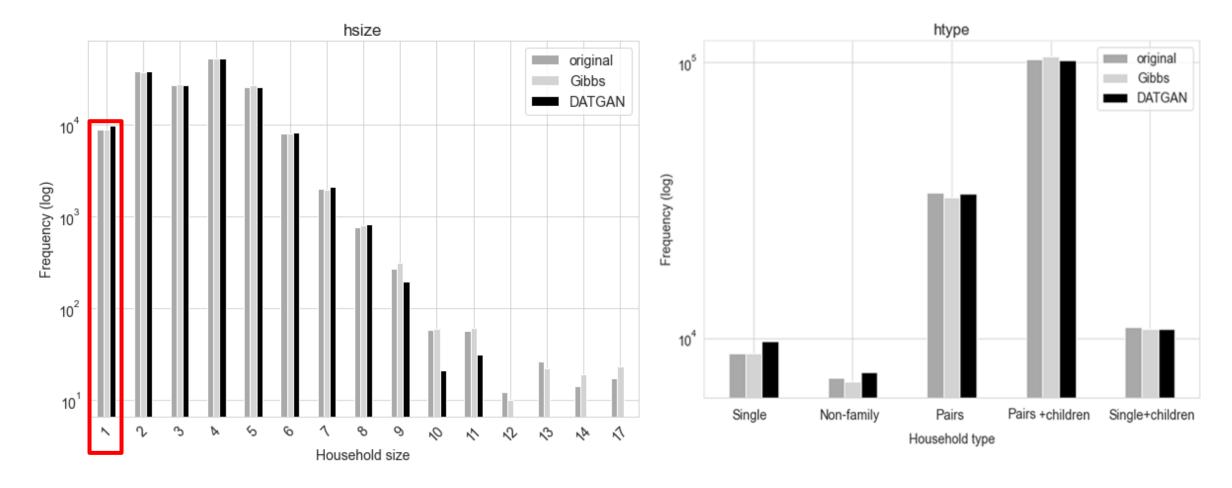
Case study: MTMC 2015 dataset

	SYNTHETIC DATASET		
Number of observations	163843 individuals 57090 households		
Area	Switzerland		
Individual attributes	Age Gender		
Household attributes	Household size Household type Number of cars in household Household income		

Case study: Validation methods

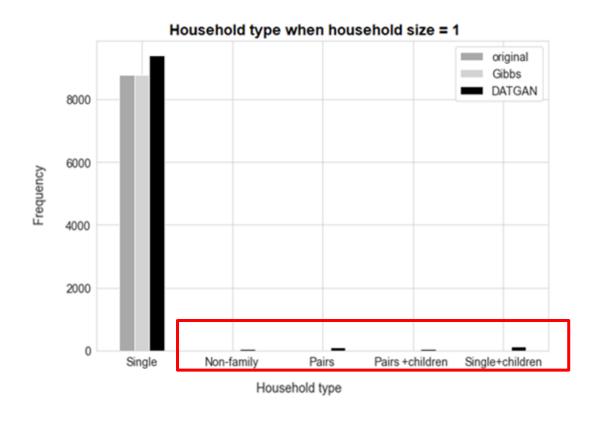
1. Visualization

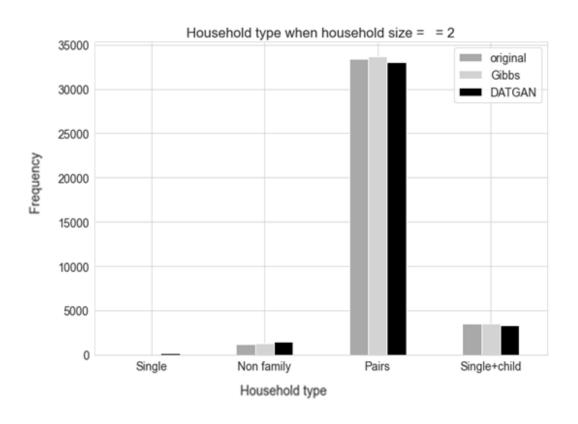
- Marginals verify aggregated values
- **Sub-distribution** verify logic in the data


2. Statistics (Lederrey et al., 2022)

- First level columns are compared one by one separately (verify aggregated values)
- **Second level** columns are compared two by two (verify logic in the data)
- Calculating: MSE, RMSE, SRMSE, R^2, Piercon's correlation

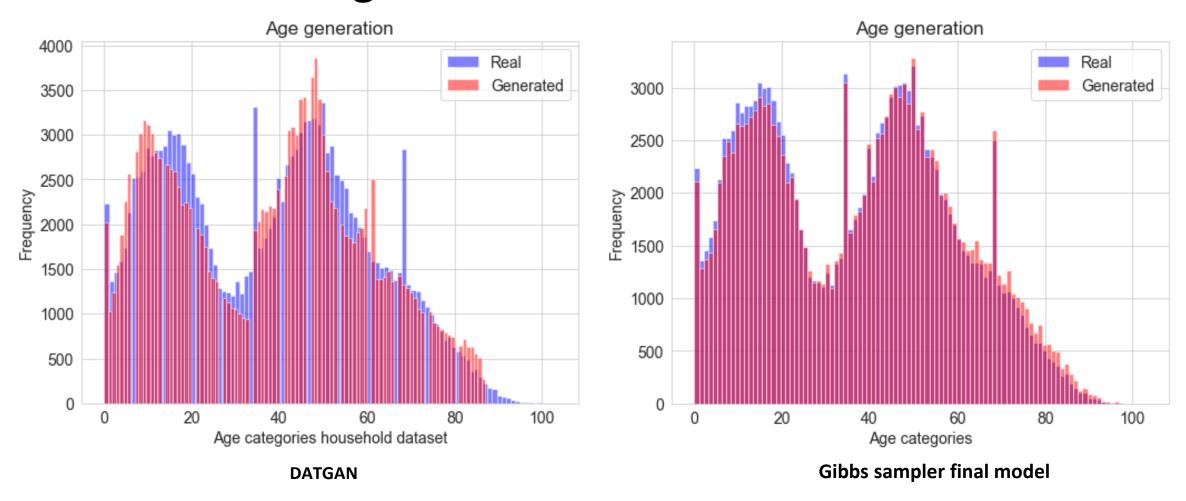
Comparison is done between:


- original dataset
- One-stage Gibbs simulator
- DATGAN (Lederrey et al.,2022)


Results - Marginals

Based on First order statistics for categorical variables - Gibbs gave a better score than DATGAN

Results – Sub-distributions

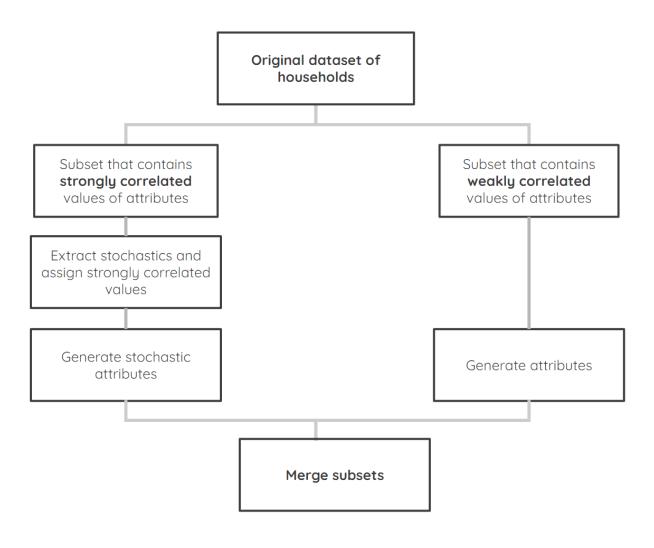


Deterministic part

Stochastic part

Based on **Second** order statistics for **categorical** variables - **Gibbs** gave a better score than **DATGAN**

Results – Marginals individuals continuous


Based on **First & Second** order statistics for **continuous** variables - **Gibbs** gave a better score than **DATGAN**

Contributions – Algorithmic part


Curse of dimensionality breaks the algorithm by adding more dimensions

- Gibbs sampler gets stuck in highly correlated areas
 - long execution time
 - less accuracy by forcing "highly correlated" values and ignoring "weakly correlated" values
- Gibbs sampler completely fails if there is 1-1 correlation -> don't generate it, assume it, save time and be more accurate

Contributions – Divide and conquer simulator for synthetic household generation

On going work...

Conclusion & Future work

- Enforce rules -> control of generation process -> assume the correlations and let the model & data to do the rest
- Divide and conquer ->
 - Identify which values are causing strong correlation
 - isolate those areas
 - generate "strongly" and "weakly" correlated subsets in parallel
 - merge subsets
- Investigate convergence and influence on efficiency
- Revise all conditionals in order to simplify where needed

Thank you for your attention!

