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Introduction

Model development

1 Behavioral hypothesis.

2 Model specification.

3 Model estimation.

4 Test and validation.

5 Go to 1.
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Introduction

Context

Specifying DCMs is difficult

No “absolute rule” and exhaustive testing is intractable.

Usual approach: expert intuition and trial-and-error.

DCMs & ever-larger datasets

Significant growth of collected data:

“Taller” data — more observations;
“Wider” data — more variables.

Consequently, two major problems for DCMs: estimation &
specification.

→ Easy way out: use machine learning instead!
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Introduction

DCMs vs. ML

ML � DCMs

Scalability — better at handling large datasets.

Data-driven — no need for presumptive structural assumptions.

DCMs � ML

Extrapolation — need for theories to explore out of the data.

Interpretability — important for trust in the model.
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Introduction

The Importance of Behavioral Realism

“Predictions made by the model are conditional on the cor-
rectness of the behavioral assumptions and, therefore, are
no more valid than the behavioral assumptions on which the
model is based. A model can duplicate the data perfectly,
but may serve no useful purpose for prediction if it represents
erroneous behavioral assumptions. For example, consider a
policy that will drastically change present conditions. In this
case the future may not resemble the present, and simple ex-
trapolation from present data can result in significant errors.
However, if the behavioral assumptions of the model are well
captured, the model is then valid under radically different
conditions.”

[Ben-Akiva, 1973]
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Introduction

Motivation

Main premise

Human expertise is fundamental to formulate plausible hypotheses
and to verify their compliance with behavioral theories. Data — no
matter how big — cannot replace such knowledge.

Still, can we use data to mitigate the need for a model specification
to be known a priori, without compromising model interpretability?
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A B S T R A C T   

Determining appropriate utility specifications for discrete choice models is time-consuming and 
prone to errors. With the availability of larger and larger datasets, as the number of possible 
specifications exponentially grows with the number of variables under consideration, the analysts 
need to spend increasing amounts of time on searching for good models through trial-and-error, 
while expert knowledge is required to ensure these models are sound. This paper proposes an 
algorithm that aims at assisting modelers in their search. Our approach translates the task into a 
multi-objective combinatorial optimization problem and makes use of a variant of the variable 
neighborhood search algorithm to generate sets of promising model specifications. We apply the 
algorithm both to semi-synthetic data and to real mode choice datasets as a proof of concept. The 
results demonstrate its ability to provide relevant insights in reasonable amounts of time so as to 
effectively assist the modeler in developing interpretable and powerful models.   

1. Introduction 

In the last 40 years, discrete choice models (DCMs) have been used to tackle a wide variety of demand modeling problems. This is 
due to their high interpretability, which allows researchers to verify their compliance with well-established behavioral theories 
(McFadden, 1974) and to provide support for policy and planning decisions founded on utility theory from microeconomics. However, 
the development of DCMs through manual specification is laborious. The predominant approach for this task is to a priori include a 
certain number of variables that are regarded as essential in the model, before testing incremental changes in order to improve its 
goodness of fit while ensuring its behavioral realism (Koppelman and Bhat, 2006). Because the set of candidate specifications grows 
beyond manageable even with a moderate number of variables under consideration, hypothesis-driven approaches of this kind can be 
time-consuming and prone to errors. Modelers tend to rely on common sense or intuition, which may lead to incorrectly specified 
models. The implications of misspecification include lower predictive power, biased parameter estimates and erroneous in-
terpretations (Bentz and Merunka, 2000; Torres et al., 2011; Van Der Pol et al., 2014). 

This issue, together with the advent of big data and the need to analyze ever-larger datasets, has induced an increasing focus on 
machine learning (ML) and other data-driven methods as a way of relieving the analyst of the burden of model specification. Unlike 
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Assisted Specification of DCMs

Disclaimer

What our method does

Assist modelers.

Save them as much time as possible.

Provide a broader understanding of any dataset.

Search more thoroughly than any human modeler would care to.

What our method does not

Replace the analyst.

Provide the best possible model for a given dataset.
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Assisted Specification of DCMs Specification of DCMs as an Optimization Problem

Specification of DCMs...

Data

For each individual n, we have:

a vector sn of socioeconomic characteristics;
a vector xin of attributes for each alternative i ;
the chosen alternative in.

“Information set”

The analyst provides:

a partition of attributes into K groups;
L potential transformations of the attributes;
S segmentations of the population;
M potential models Pm(i |V ;µ), m = 1, . . . ,M.

→ What is the “best” specification we can come up with?
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Assisted Specification of DCMs Specification of DCMs as an Optimization Problem

Specification of DCMs... as an Optimization Problem

Decision variables

Five sets of binary variables:

δk = 1 if group k is in the model;
γk = 1 if group k is associated with a generic coefficient;
φk` = 1 if group k is associated with nonlinear transform `;
σks = 1 if the coefficients of group k are segmented based on s;
ρm = 1 if model m is used to calculate the choice probabilities.

ω = (δ, γ, φ, σ, ρ) unequivocally describes a model specification.

Objective function

Goodness of fit, i.e., log likelihood L(ω)?

Parsimony, i.e., number of parameters Z(ω)?

Why not both?
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Assisted Specification of DCMs Specification of DCMs as an Optimization Problem

Multi-Objective Optimization

Two objective functions!

We want the best fit (maximize L) with the least parameters
(minimize Z).

Conflicting objectives: improving one deteriorates the other.

AIC and BIC quantify the trade-off between L and Z...

... but we don’t need to!

How do we rank solutions then?
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Assisted Specification of DCMs Specification of DCMs as an Optimization Problem

Pareto Optimization

Dominance

Solution ω1 dominates ω2 (ω1 � ω2) if:

not worse in any objective:

L(ω1) ≥ L(ω2) and Z(ω1) ≤ Z(ω2),

strictly better in at least one objective:

L(ω1) > L(ω2) or Z(ω1) < Z(ω2).

Pareto front P
Set of non-dominated solutions (if ω ∈ P, no feasible ω′ such that
ω′ � ω).

All solutions in P are considered equally good.

Solution to a multi-objective problem.
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Assisted Specification of DCMs Proposed Algorithm

Multi-Objective Variable Neighborhood Search

Metaheuristics

Too many feasible solutions!

Explore the search space efficiently.

“Sufficiently good solutions in reasonable amounts of time.”

Description

Iteratively improve an approximation of the Pareto front.

Start with one or several user-defined candidates.

Three ingredients:

Exploration — how we move in the search space,
Intensification — how we find local optima,
Diversification — how we escape local optima,
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Assisted Specification of DCMs Proposed Algorithm

Operators

Exploration — how we move in the solution space

Generate “neighbors” of a model.

Mimic what an experienced modeler would do.

Each operator modifies a subset of the decision variables.

The complexity of the modification depends on the “size” of the
neighborhood.

Operators are invoked randomly.
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Assisted Specification of DCMs Proposed Algorithm

Operators

Change variables δk ← 1− δk

Change generic * γk ← 1− γk

Change non-linearity * {(k , l) | φkl = 1} : φk` ← 0, φk`′ ← 1

Change linearity *

{
If φk0 = 1 : φk0 = 0, φk`′ = 1

If φk0 = 0 : φk0 = 1, φk1 = · · · = φkL = 0

Change segmentation * σks ← 1− σks
Increase segmentation * {(k , s) | σks = 0} : σks ← 1

Decrease segmentation * {(k , s) | σks = 1} : σks ← 0

Change model {m | ρm = 1} : ρm ← 0, ρm′ ← 1
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Assisted Specification of DCMs Proposed Algorithm

Generic VNS Algorithm

Intensification — how we find local optima

Local search:

Select model ω ∈ P at random;
Generate and estimate neighbor ω′.

Update the Pareto front P when appropriate:

Add ω′ to P if {ω ∈ P | ω � ω′} = Ø;
Remove from P all solutions dominated by ω′.

Diversification — how we escape local optima

Systematic changes of neighborhood size p = 1, . . . ,P.

After Q unsuccessful iterations, p ← p + 1.

After each successful iteration, p ← 1.
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Assisted Specification of DCMs Proposed Algorithm

Ensuring Behavioral Realism

Consistency with behavioral intuition is important

User-defined constraints to verify model validity.

Two options:

Hard — reject all models that violate the constraints (post-estimation).
Soft — constrained maximum likelihood estimation. [Schoenberg, 1997]

Why constrained maximum likelihood?

Hard constraints may conceal severe specification issues.

Fewer rejected models → more thorough search.

All estimates guaranteed to be “behaviorally valid”.
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Experiments In-Sample/Out-of-Sample Comparison

Data

Swissmetro dataset [Bierlaire et al., 2001]

SP data.

3 alternatives.

10’710 observations, 20% as validation data.

Problem size

K = 3, L = 5, S = 7, M = 3.

≈ 4.6× 108 possible specifications.
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Experiments In-Sample/Out-of-Sample Comparison

In-Sample
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Experiments In-Sample/Out-of-Sample Comparison

Out-of-Sample
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Experiments Semi-Synthetic Data

Data

Synthetic choices

Based on the Swissmetro data.

We define a “true model”:

Estimated on the original data.
Used to sample new, synthetic choices.
Can be reached by the algorithm!

Problem size (same as previous)

K = 3, L = 5, S = 7, M = 3.

≈ 4.6× 108 possible specifications.
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Experiments Semi-Synthetic Data

True Model Nearly Recovered

0 25 50 75 100 125 150 175 200
Number of estimated parameters

8250

8500

8750

9000

9250

9500

9750

10000

N
eg

.
lo

g
lik

el
ih

oo
d

Pareto front

Removed

Considered

Initial model

True model

Nicola Ortelli, Michel Bierlaire (EPFL) Assisted Specification of DCMs October 24, 2021 25 / 33



Experiments Alternate Initial Models

Data

London Passenger Mode Choice [Hillel et al., 2018]

RP data.

4 alternatives.

54’766 + 26’320 observations.

Problem size

K = 5, L = 3, S = 8, M = 4.

≈ 4.7× 1010 possible specifications.
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Experiments Alternate Initial Models

Initial Model: ASCs Only
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Experiments Alternate Initial Models

Initial Model: Expert-Defined
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Conclusion

Conclusion

Summary

Flexible approach for assisted specification of DCMs.

Appropriate use of data can partially relieve the modeler.

Sets of high-quality specifications in reasonable amounts of time.

Interpretable results!

Two major limitations

Computational cost.

Overfitting → This is why we should never replace the analyst!
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Conclusion

Conclusion

Future work

Try other objectives! Out-of-sample performance?

Leverage the whole Pareto front. Model averaging?

Faster estimation:

Heuristics based on partial estimation.
More complex optimization algorithms: HAMABS [Lederrey et al., 2021]
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Questions?
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