Scheduling of daily activities: an optimization approach

Janody Pougala Tim Hillel Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

November 25, 2019
Travel demand is derived from activity demand.

Activity demand is influenced by socio-economic characteristics, social interactions, cultural norms, basic needs, etc. [Chapin, 1974]

Activity demand is constrained in space and time [Hägerstraand, 1970].
Econometric models

Rule-based models
[Pinjari et al., 2011]

- ... individuals make their activity-travel decisions to maximize the utility derived from the choices they make.
- These model systems usually consist of a series of ... discrete choice models ... that are used to predict ... individuals’ activity-travel decisions.
- these model systems employ econometric systems of equations ... to capture relationships between ... socio-demographics and ... attributes on the one hand and the observed activity-travel decision outcomes on the other.
State of the art: econometric approach

[Pinjari et al., 2011]: main criticisms

- individuals are not necessarily fully rational utility maximizers
- the approach does not explicitly model the underlying decision processes and behavioral mechanisms that lead to observed activity-travel decisions.
Research question

Relax the *series of discrete choice models* approach

- The interactions of all decisions is complex.
- Sequence of models is most of the time arbitrary.

Integrated approach

Develop a model involving all activity-based decisions:

- activity participation,
- activity pattern,
- location choice,
- time of day,
- duration.
Research objectives

• Integrated approach based on first principles.
• Theoretical framework: utility maximization.
• Individuals solve a scheduling problem.
• Important aspects: trade-offs on activity duration.
Outline

1. Introduction
2. Model
3. Mixed integer optimization problem
4. Examples
First principles

- Each individual n has a time-budget (a day).
- Each activity i considered by n is associated with a utility U_{in}.
- Individuals schedule their activities as to maximize the total utility, subject to their time-budget constraint.
Further assumptions

Individuals are **time sensitive**
- Have a desired *start time*, *duration* and/or *end time* for each activity
- Deviations from their desired times in the scheduling process decrease the utility function
Time horizon: 24 hours.
Discretization: T time intervals.
Trade-off between model accuracy and computational time.
Space

- Discrete and finite set S of locations, indexed by s.
- Trips between location are modeled exogenously.
- For each (s_o, s_d), $\rho(s_o, s_d)$ is the travel time.
- Extensions to include mode and route choices are possible.
Definition: Activity

An activity requires a trip to/from a given location.
Activities

- Set A of activities.
- Location s_a.
- Starting time x_a, $0 \leq x_a \leq T$.
- Duration: $\tau_a \geq 0$.
- Feasible time interval: $[\gamma^-_a, \gamma^+_a]$ (e.g. opening hours).
- “Home”: same, except for boundary conditions.

Modeling location choice

An activity that can take place at m locations is modeled as a set B_k of m activities with a unique location.
Scheduling of daily activities
Categories

- [Castiglione et al., 2014]: mandatory, maintenance, discretionary.
- Flexible, somewhat flexible, not flexible.

Category

Activities that share the same preference profile.
Preferences

- desired starting time x_a^*,
- desired duration τ_a^*.

Penalties

- Starting early [Small, 1982]:
 $$\theta_e \max(x_a^* - x_a, 0).$$
- Starting late [Small, 1982]:
 $$\theta_\ell \max(x_a - x_a^*, 0).$$
- Shorter activity: $\theta_{ds} \max(\tau_a^* - \tau_a, 0).$
- Longer activity: $\theta_{d\ell} \max(\tau_a - \tau_a^*, 0).$
Preferences

Parameters depend on the category type

![Diagram showing utility over time with different flexibility levels](image)

- **Flexible**
- **Somewhat flexible**
- **Not flexible**

- **Early**
- **Late**

Pougala, Hillel, Bierlaire (EPFL)

Scheduling of daily activities

November 25, 2019
Disutility of travel

Traveling is part of the activity

- Travel from \(a \) to \(a^+ \) contributes to \(U_a: t_a \).
- Exception: last activity of the day (home).
- In this version, travel choices are exogenous.
Utility function

An individual n derives the following utility from performing activity a, with a schedule flexibility k:

$$ U_{an} = \theta_e \max(x_a^* - x_a, 0) $$
$$ + \theta_\ell \max(x_a - x_a^*, 0) $$
$$ + \theta_{ds} \max(\tau_a^* - \tau_a, 0) $$
$$ + \theta_{d\ell} \max(\tau_a - \tau_a^*, 0) $$
$$ + \theta_{tt} t_a $$
$$ + c_{an} + \sigma_{an} \varepsilon_{an}, $$

where ε_{an} is a random term with mean 0 and variance 1.
Utility function

Error terms
- Rely on simulation.
- Draw $\xi_{anr}, r = 1, \ldots, R$.
- Optimization problem for each r.
- Utility: U_{anr}.
Outline

1. Introduction
2. Model
3. Mixed integer optimization problem
4. Examples
Decision variables for individual n and draw r

For each (potential) activity a:

- Activity participation: $w_{anr} \in \{0, 1\}$.
- Starting time: $x_{anr} \in \{0, \ldots, T\}$.
- Duration: $\tau_{anr} \in \{0, \ldots, T\}$.
- Scheduling: $z_{abnr} \in \{0, 1\}$: 1 if activity b immediately follows a.
- Travel time: t_{anr}: travel time from a to the next activity.
Mixed integer optimization problem

Objective function

Additive utility

\[\max \sum_{a \in A} w_{anr} U_{anr} \]
Constraints

Time budget

\[\sum_a \tau_{anr} = T, \forall n, r. \]

Time windows

\[0 \leq \gamma^-_a \leq x_{anr} \leq x_{anr} + \tau_{anr} \leq \gamma^+_a \leq T, \forall a, n, r. \]
Constraints

Precedence constraints

\[z_{abnr} + z_{banr} \leq 1, \, \forall a, b, n, r. \]

Single successor/predecessor

\[\sum_{b \in A \setminus \{a\}} z_{abnr} = w_{anr}, \, \forall a, n, r, \]

\[\sum_{b \in A \setminus \{a\}} z_{banr} = w_{anr}, \, \forall a, n, r. \]
Mixed integer optimization problem

Constraints

Travel time

$$t_{anr} = \sum_{b \in A} z_{abnr} \rho(s_a, s_b).$$

Consistent timing

$$(z_{abnr} - 1) T \leq x_{anr} + \tau_{anr} + t_{anr} - x_b \leq (1 - z_{abnr}) T, \ \forall a, b, n, r.$$

Mutually exclusive duplicates

$$\sum_{a \in B_k} w_{anr} = 1, \ \forall k, n, r.$$
Outline

1. Introduction
2. Model
3. Mixed integer optimization problem
4. Examples
Internal data set

Data collection
- One-week survey on planned daily schedules for 10 individuals.
- Planning across **week** and **day**.
- Resulting data (unavailable in traditional trip diaries):
 - Set of all considered activities and locations.
 - Preferences in terms of start times and duration.
 - Flexibilities for start times and duration.
Weekly plan: filled on Sunday, considerations for next Mon-Sun

Considered activities (*Which out-of-home activities do you plan to do this week?):
- Choice between 9 categories + 1 “other” option
- Frequency of the activity

Set of transportation modes (for travel time computations)

Routine preferences:
- Minimal daily duration at home (Mon-Fri and Sat-Sun)
- Typical daily duration at work
- Earliest departure from home (Mon-Fri and Sat-Sun)
- Latest arrival at home (Mon-Fri and Sat-Sun)
Examples

Data set

- **Daily plan**: filled each day (Sun-Sat), considerations for the next day
- Considered activities (*Which activities do you plan to do tomorrow?*)
- Preferred times:
 - Start time: absolute value or relative, e.g. “after work”
 - End time
 - Duration
- Considered location(s) and feasible time windows for each
- Flexibility (early, late, short, long):
 - -1: not flexible
 - 0: moderately flexible (threshold value to be specified in minutes)
 - 1: flexible
- Other constraints (e.g. drop-off at home after grocery shopping)
Data set

Model input:
- All possible activities for the week (Mon-Fri and Sat-Sun)
- All considered locations and travel times matrix (for the preferred mode(s), computed using Google Maps)
- Individual flexibilities and preferred times for each activity

Output:
- Optimal schedule for 1 day (Mon-Fri or Sat-Sun)
Individual 1 (weekday)

- Considered activities → location(s):
 - work → 1 (home), 2
 - education → 1
 - errands → 2, 3
 - fitness → 4
 - leisure/social → 5
 - lunch → 2

- Timing preferences and flexibility from daily schedules
- Preference for home time from week schedule
Individual 1 (weekday)

Optimal schedules generated for random draws of $\varepsilon_{an} \sim \mathcal{N}(0, 1)$
Examples

Individual 2 (weekday)

- Considered activities → location(s):
 - work → 1 (home), 2
 - errands → 3, 4, 5
 - fitness → 1
 - leisure/social → 2, 6
 - lunch → 2
Individual 2 (weekday)

Optimal schedules generated for random draws of $\varepsilon_{an} \sim \mathcal{N}(0, 1)$
Conclusions

Achievements so far

- Formulation of the model.
- Applied on a simple case.
- The results make sense.
- We are able to draw from a distribution of activity schedules.

Challenges

- Use of real data.
- Parameter estimation.
Conclusions

Real data

- 2015 Swiss Mobility and Transport Microcensus.
- Daily trip diaries for 20’000 individuals.
- Records of activities and visited location.
- Also: 2012–2015 London Travel Demand Survey.

Challenges: classical RP issues

- No information about unchosen alternatives.
- Latent preferences.
Parameter estimation

- Prior: \(f(\beta) \).
- Data: \(Y = (i_n, x_n)_{n=1}^N \).
- Likelihood: \(L(Y|\beta) \).
- Parameters:

\[
f(\beta|Y) \propto L(Y|\beta)f(\beta).
\]

Challenges

- Metropolis-Hastings algorithm.
- Calculation of the likelihood.
Bibliography I

