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SHORT SUMMARY

In this paper, we formulate a mixed integer linear program (MILP) for the simulated maximum
likelihood estimation (MLSE) problem and devise a Benders decomposition approach to speed up
the solution process. This framework can be applied to any advanced discrete choice model and
exploits total unimodularity to keep the master problem linear in the decomposition. The proposed
decomposition approach is benchmarked against the original MILP formulation and PandasBio-
geme. Computational experiments are performed on a binary logit mode choice model with up
to 200 respondents. Results show that the Benders decomposition approach solves instances on
average 35 and up to 100 times faster than the MILP while maintaining high quality solutions.

Keywords: benders decomposition, discrete choice, maximum likelihood estimation, mixed inte-
ger linear programming, simulation

1. INTRODUCTION

Maximum likelihood estimation (MLE) is a broadly used method to estimate the parameters of
a probability distribution, given observed data (Myung, 2003). It finds its use in many areas of
mathematical statistics (Sur & Candès, 2019), physics (Hauschild & Jentschel, 2001), machine
learning (Goodfellow, Bengio, & Courville, 2016) and discrete choice modeling (Bierlaire, 2003).
The latter specifically relies on the use of MLE to estimate the optimal parameters of convex and
non-convex discrete choice models (Bierlaire, 1998). This estimation process is challenging, es-
pecially for more advanced discrete choice models, e.g. latent class or probit models, because of
nonconvex and nonlinear mathematical properties. Given that the choice probabilities resulting
from such models do not have a closed-form expression, optimization approaches have typically
relied on simulation techniques, i.e. maximum simulated likelihood estimation (MLSE, see Train,
2009). A general implementation approach for MSLE has been proposed in Fernández Antolín
(2018), where the problem is formulated as a mixed integer linear program (MILP). The approach
relaxes any assumption on the specific shape of the error term distribution and instead only as-
sumes that it is possible to take draws. This allows it to be flexibly applied to any advanced
discrete choice model. With a sufficiently large number of draws, the MILP formulation guar-
antees convergence to global optimal solutions. However, since the complexity of MILP scales
exponentially with the number of draws, the approach can currently only be applied to solving
small-scale instances, i.e., with few individuals and alternatives (Paneque, Bierlaire, Gendron, &
Azadeh, 2021).
In this work, we extend the MILP approach in Fernández Antolín (2018) by means of a Ben-
ders’ decomposition approach (Rahmaniani, Crainic, Gendreau, & Rei, 2017), which speeds-up
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the MILP solution process for the MLSE and enables to scale-up the tackled instances. Our de-
signed Benders’ decomposition approach exploits total unimodularity to keep the master problem
linear, thus eliminating the bottleneck in computational time usually associated with Benders de-
composition. The proposed approach is benchmarked against the full MILP and PandasBiogeme
(Bierlaire, 2020). The decomposition method is demonstrated on a binary logit discrete choice
model, together with an analysis of the results.

2. METHODOLOGY

In this section, we formally introduce an MILP formulation for the MSLE problem, based on
the work in Fernández Antolín (2018), and a problem-specific Benders decomposition approach.
Without loss of generality, the formulation is presented in the context of a multinomial logit for-
mulation, with examples on how to extend it to other model classes, such as probit and latent class
models.

MILP formulation

max
β ,ω,s,z,U,H

∑
n

∑
i

yinzin

s.t.

∑
i

ωinr = 1 (µnr)

Hnr = ∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

sin = ∑
r

ωinr (θin)

zin ≤ Lr −Krsin (ξinr)

Uinr = ∑
k

βkxink + εinr (κinr)

ω ∈ {0,1}
β ,s,z,U,H ∈ R

Formulation 1 – MSLE as an MILP

Consider a set of n = {1, . . . ,N} individu-
als choosing exactly one alternative among
a set of i = {1, . . . , I} alternatives. Such
choice is depicted by a binary decision vari-
able yin. Assume that each individual n
selects the alternative i corresponding to
the maximal utility Uin, i.e. yin = 1 ⇔
Uin = max j U jn. The utility function de-
pends on k parameters β which are to be
estimated. The objective is to maximize the
likelihood function, given by ∏n ∏i Pn(i)yin ,
where Pn(i) represents the probability of in-
dividual n choosing alternative i. In order
to linearize the likelihood function, a set
of r = {1, . . . ,R} independent scenarios are
created by sampling the error term distribu-
tion, i.e. εinr. Denote by ωinr the binary
decision variable that indicates whether in-
dividual n chooses alternative i in scenario
r. In this case, the choice probabilities are

approximated by Pn(i) ≈ 1
R ∑r ωinr and are guaranteed to converge to the real probabilities with

a sufficiently large number of scenarios R (Paneque et al., 2021). Taking the log of the like-
lihood and replacing Pn(i) by its estimator yields an objective that still contains the nonlinear
term ln(∑r ωinr). This issue is tackled by introducing the auxiliary decision variable sin = ∑r ωinr,
which is defined in constraints (θin). Similarly, an auxiliary variable zin is introduced to represent
the piece-wise linearization of the logarithm. The latter is defined in Constraints (ξinr), where
Lr = (1+ r) ln(r)− r ln(1+ r) and Kr = ln(r)− ln(1+ r) are constants representing intercepts and
slopes used for the linearization. With such pre-processing steps and by ignoring the constant
term −N ln(R), the objective of the problem can be rewritten as stated in Formulation 1. The rest
of the constraints model individual choices. Constraints (µnr) guarantee that only one alternative
can be chosen per individual and scenario. Constraints (κinr) model the utility of each alternative
i for individual n in scenario r, i.e. Uinr. Constraints (ζnr), which can be easily linearized using
a standard big-M approach, and constraints (αinr) ensure that the choice being made corresponds
to the one with the highest utility. Note that Formulation 1 is characterized by the complicating
binary decision variables ω .
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The MILP formulation can be easily adapted to other model speficiations. For example, in order
to tackle a probit model, it is sufficient to add the cholesky factor of the covariance matrix (Dow
& Endersby, 2004) in the right-hand side of constraints (κinr). Note that this transformation in-
creases the number of parameters to be estimated by I(I+1)

2 . Similarly, in order to tackle a latent
class model, it is sufficient to add a class membership indicator γcn where c is the class index.
For each class c, the constraints corresponding to making the best choice ωcinr for that class are
duplicated, and finally a global choice variable is defined as ωinr = ∑c ωcinrγcn.

Benders decomposition approach

Combinatorial optimization problems that are characterized by complicating variables are typi-
cally tackled by a Benders decomposition approach (Benders, 1962). It can be summarized as an
iterative solution procedure in which the complicating variables are isolated into a master prob-
lem and their solution values are fed to a subproblem, whose dual information is used to create
cuts for the master problem in order to create new solutions. For a comprehensive review of
the method, see for example (Rahmaniani et al., 2017). In most applications, the complicating
variables are integral, resulting in the need to solve an integral master problem at each iteration.
This makes Benders notorious for its slow convergence. In our case, we can use an elegant trick
to avoid this issue: by identifying the continuous estimation parameters β as the complicating
variables and fixing them in the subproblem, the utilities of all the alternatives become fixed as
well. Thus the problem of choosing the highest utility alternative simplifies to a knapsack prob-
lem, which is totally unimodular. This mathematical property allows us to drop the integrality
constraints on the choice variables. Formulation 2 and Formulation 3 give the respective defini-
tions of the primal and dual of the subproblem, while Formulation 4 describes the master problem.

min
β ,ω,χ,η ,s,z,H

−∑
n

∑
i

yinzin

s.t.

∑
i

ωinr = 1 (µnr)

∑
k

βkxink −Hnr ≤ −εinr (αinr)

Hnr −∑
ik

ηinrkxink ≤ ∑
i

ωinrεinr (ζnr)

χinr +ωinr = 1 (πinr)

ηinrk +β
fixed
k χinr = β

fixed
k (λinrk)

βk −∑
i

ηinrk = 0 (ϕβ

nrk)

sin −∑
r

ωinr = 0 (θin)

zin +Krsin ≤ Lr (ξinr)

ω,χ,s ∈ R≥0

β ,η ,z,H ∈ R

Formulation 2 – Primal subproblem

max
µ,α,ζ ,µ,λ ,ϕβ ,θ ,ξ

∑
nr

µnr −∑
inr

εinrαinr +∑
inr

πinr

+∑
inrk

β
fixed
k λinrk +∑

inr
Lrξinr

s.t.
µnr −ζnrεinr +πinr −θin ≤ 0 (ωinr)

πinr +∑
k

β
fixed
k λinrk ≤ 0 (χinr)

−∑
i

αinr +ζnr = 0 (Hnr)

−ζnrxink +λinrk −ϕ
β

nrk = 0 (ηinrk)

θin +∑
r

Krξinr ≤ 0 (sin)

∑
r

ξinr = −yin (zin)

∑
inr

αinrxink +∑
nr

ϕ
β

nrk = 0 (βk)

µ,π,λ ,θ ,ϕβ ∈ R
α,ζ ,ξ ∈ R≤0

Formulation 3 – Dual subproblem

As the linearization of Constraint (ζnr) using a big-M approach no longer works when integrality
constraints are relaxed, the formulation in the primal subproblem is slighlty modified: The product
ηinrk = ωinrβk is modeled directly using Constraints (πinr), (λinrk) and (ϕβ

nrk). This formulation is
equivalent to Formulation 1. It is important to mention that, in order to preserve the inegrality of
the primal, information about β fixed had to be kept in its coefficient matrix, which implies it also
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being contained in the matrix of the dual, i.e. Constraints (χinr). This means the feasible region of
the dual subproblem is not constant over iterations, which might distort the Bender cuts. Lastly,
both the primal and the dual models are fully decomposable on the individuals n, as individuals
select alternatives independently from each other.

min
L ,β

L

s.t.
L ≥ L ∗+∑

n
∑
k

φ
∗
nk(βk −β

fixed
k ) (1)

L ≥ L best (2)

L ,β ∈ R

Formulation 4 – Master problem

Finally, the master problem reduces to find-
ing optimal values for the estimation pa-
rameters β . For each β fixed, after solv-
ing the dual subproblem, a Benders cut of
the same type as Constraint (1) is added.
The parameters of the Benders cuts are
determined by the achieved objective L ∗

and φ ∗
nk = ∑ir λ ∗

inrk. Each optimal objective
value of the master problem serves as a new
lower bound on the objective, enforced in
Constraint (2).

3. RESULTS AND DISCUSSION

Our approach is tested on a binary logit model. A mode choice problem between two alternatives,
public transport (pt) and car, is considered. The systematic utilities of the alternatives are:

Vcar = βtime · traveltimecar
Vpt = βtime · traveltimept

The dataset is extracted from revealed preference data on mode choice collected in 1987 for the
Netherlands Railways, consisting of 228 respondents (CASE, 2017). Experiments are performed
using GUROBI 9.5.0 (Gurobi Optimization, LLC, 2021) on a 2.6 GHz 6-Core Intel Core i7 proces-
sor with 16 GB of RAM, with a three hour time limit per instance. Our proposed Benders approach
is benchmarked against PandasBiogeme (Bierlaire, 2020) and the full MILP, in terms of objective
values and runtimes. Biogeme’s objective function is the Log-Likelihood (LL = ln(∏n ∏i Pn(i)yin))
, which is approximated by the simulated Log-Likelihood (sLL), the MILP objective. For the
purpose of comparison, the LL is also evaluated for the decomposition and the MILP using the
estimated parameters. We take random subsets of individuals from the population to get instances
that are manageable for the MILP.
Table 1 shows the comparison between the decomposition and the full MILP in terms of sLL and
computation times, while Table 2 shows the results in terms of LL. We highlight the following:
1. the decomposition solves the problem on average 35 and up to 100 times faster, 2. comparing
the optimal solution values for the full MILP and our decomposition reveals small gaps in optimal-
ity, and 3. increasing the number of draws reduces the optimality gap between the exact solution
(PandasBiogeme) and the approximation (MILP and decomposition).

Although Benders decomposition is an exact approach, our formulation contains mathematical
aspects that may currently prevent the convergence to the real global optimum. As mentioned in
the methodology, a possible explanation for the deviations is the fact that information about the
master variables is maintained in the coefficient matrix of the dual. Other explanations include
numerical issues, stemming for example from the linearization of the logarithm or the way certain
solvers handle specific constraints.
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Table 1 – Comparing our decomposition method with the full MILP in terms of
sLL and runtime (N = population size, R = number of draws, sLL = simulated Log-
Likelihood, M = MILP, D = decomposition, T = time in sec.)

N R sLL-M sLL-D Gap [%] T-M T-D
20 50 -12.607 -12.658 -0.40 64.942 10.061
20 100 -12.212 -12.258 -0.38 403.694 9.902
20 200 -12.283 -12.648 -2.97 1117.064 16.939
50 50 -30.848 -31.030 -0.59 286.679 29.780
50 100 -30.461 -31.040 -1.90 1558.604 65.006
50 200 -30.566 -30.692 -0.41 5375.655 98.206

100 50 -65.204 -65.801 -0.92 2820.229 28.781
100 100 -65.784 -67.419 -2.49 4346.067 274.163
100 200 -65.699 -66.018 -0.49 10800+ 295.741
200 50 -123.551 -124.027 -0.39 1476.185 120.579
200 100 -124.000 -124.243 -0.20 10800+ 327.253
200 200 -124.707 -124.106 0.48 10800+ 1262.755

Table 2 – Comparing our decomposition method with the full MILP and Pandas-
Biogeme in terms of LL (N = population size, R = number of draws, LL = Log-
Likelihood, Biog = PandasBiogeme, M = MILP, D = decomposition)

N R LL-Biog LL-M Gap [%] LL-D Gap [%]
20 50 -12.303 -12.444 -1.15 -12.493 -1.55
20 100 -12.303 -12.395 -0.75 -12.411 -0.88
20 200 -12.303 -12.378 -0.61 -12.463 -1.30
50 50 -30.265 -30.326 -0.20 -30.683 -1.38
50 100 -30.265 -30.326 -0.20 -30.481 -0.72
50 200 -30.265 -30.325 -0.20 -30.283 -0.06

100 50 -64.883 -64.898 -0.02 -65.396 -0.79
100 100 -64.883 -64.883 0.00 -66.031 -1.77
100 200 -64.883 -64.893 -0.02 -64.925 -0.06
200 50 -122.689 -122.735 -0.04 -122.690 0.00
200 100 -122.689 -122.920 -0.19 -122.739 -0.04
200 200 -122.689 -123.342 -0.53 -122.721 -0.03

4. CONCLUSIONS

In this paper, we develop a mixed integer linear program (MILP) for the simulated maximum
likelihood estimation (MLSE) problem and construct a Benders decomposition approach to speed
up the solution process. The methodology can be applied to any advanced discrete choice model
and makes use of total unimodularity to keep the master problem linear in the decomposition,
avoiding the typical bottleneck in efficiency for a Benders decomposition. The results on a binary
logit discrete choice model show an average speed up of factor 35, with instances being solved up
to 100 times faster. Small deviations in the optimal solution values between decomposition and
full MILP are present. This is currently under investigation, together with applications to more
advanced discrete choice models.
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