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1 INTRODUCTION

Maximum likelihood estimation (MLE) is a broadly used method to estimate the parameters
of a previously specified distribution, given observed data. It finds its use in many areas of
physics (e.g. Hauschild & Jentschel (2001)), machine learning (e.g. Goodfellow et al. (2016))
and discrete choice modelling (e.g. Bierlaire (2003)). Advanced discrete choice specifications like
latent class or probit models are challenging to estimate, as the choice probabilities resulting from
such models are highly non-convex and do typically not have a closed-form expression. For this
reason, optimization approaches have relied on simulation techniques, i.e. maximum simulated
likelihood estimation (MSLE), see Train (2009). A general approach for MSLE has been proposed
in Fernández Antolín (2018), where the problem is formulated as a mixed integer linear program
(MILP). This allows to define the model in terms of its error components, enabling the approach
to be flexibly applied to any advanced discrete choice model. It is furthermore independent from
the complexity of the error term distributions, the only requirement being that its possible to
take draws. If the number of draws is sufficiently large, the MILP formulation is guaranteed to
convergence to a globally optimal solution. However, since the complexity of the MILP scales
exponentially with the number of draws, the approach can currently only be applied to solving
small-scale instances (i.e., with few individuals and alternatives).

In this work, we extend the range of applicability of the MILP approach in Fernández Antolín
(2018) by means of a Benders decomposition, which speeds-up the MILP solution process for
the MLSE drastically and enables to scale-up the tackled instances. Our designed Benders de-
composition exploits total unimodularity to keep the master problem linear, thus eliminating the
bottleneck in computational time usually associated with Benders decomposition. The proposed
approach is benchmarked against the full MILP and PandasBiogeme. Preliminary results on a
simple logit model show that the Benders decomposition approach solves instances up to 60x
times faster than the MILP, while retaining high quality solutions.
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2 METHODOLOGY

In this section, we formally introduce an MILP formulation for the MSLE problem, based on the
work in Fernández Antolín (2018), and a problem-specific Benders decomposition approach.

2.1 MILP formulation

max
β,ω,s,z,U,H

∑
n

∑
i

yinzin

s.t. ∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

sin =
∑
r

ωinr (θin)

zin ≤ Lr −Krsin (ξinr)

Uinr =
∑
k

βkxink + ϵinr (κinr)

ωinr ∈ {0, 1}
β, s, z, U,H ∈ R

Formulation 1 – MSLE as an MILP

Consider a set of n = {1, . . . , N} individuals
choosing exactly one alternative among a set
of i = {1, . . . , I} alternatives. Such choice is
depicted by a binary decision variable yin. As-
sume that each individual n selects the alter-
native i corresponding to the maximal util-
ity Uin, i.e. yin = 1 ⇔ Uin = maxj Ujn.
The utility function is defined in constraints
(κinr) and depends on k parameters β which
are to be estimated. The simulated choices for
each scenario r = {1, . . . , R} are captured by
the binary variables ωinr, together with con-
straints (µnr), limiting the choice to a sin-
gle alternative. Constraints (ζnr) and (αinr)
guarantee that the chosen alternative corre-
sponds to the one with the highest utility. The
objective is to maximize the simulated log-
likelihood, given by ln(

∏
n

∏
i P̂n(i)

yin), where
P̂n(i) represents the estimator for the prob-
ability of individual n choosing alternative i
and is given by 1

R

∑
r ωinr. Constraints (θin)

and (ξinr) model a piece-wise linearization of the log-transformation, utilizing constants Lr =
(1 + r) ln(r)− r ln(1 + r) and Kr = ln(r)− ln(1 + r) for the intercepts and slopes.

2.2 Benders decomposition approach

Combinatorial optimization problems that are characterized by complicating integer decision
variables are typically tackled by a Benders decomposition approach (Benders (1962)). As the
integral master problem needs to be solved repeatedly, Benders is notorious for its slow conver-
gence. In our case we can use an elegant trick to avoid this issue: by identifying the continuous
estimation parameters β as the complicating variables and fixing them in the subproblem, the
utilities of all the alternatives become fixed as well. Thus the problem of choosing the highest
utility alternative simplifies to a knapsack problem, which is totally unimodular, which allows to
drop the integrality constraints on the choice variables. Formulations 2 and 3 give the respective
definitions of the primal and dual of the subproblem, while Formulation 4 describes the master
problem.

As the linearization of constraint (ζnr) using a big-M approach no longer works when inte-
grality constraints are relaxed, the formulation in the primal subproblem needs to be modified.
The product ηinrk = ωinrβk is modeled directly using constraints (πinr), (λinrk) and (φβ

nrk). This
formulation is equivalent to Formulation 1. It is important to mention that, in order to preserve
the inegrality of the primal, information about βfixed had to be kept in the matrix, which implies
it also being contained in the matrix of the dual (constraints (χinr)). This means the feasible
region of the dual subproblem is not constant over iterations, which might distort the Bender
cuts. Lastly, both the primal and the dual models are fully decomposable on the individuals n,
as individuals select alternatives independently from each other and across scenarios.
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2.2.1 Subproblem

min
β,ω,χ,η,s,z,H

−
∑
n

∑
i

yinzin

s.t. ∑
i

ωinr = 1 (µnr)∑
k

βkxink −Hnr ≤ −ϵinr (αinr)

Hnr −
∑
ik

ηinrkxink ≤
∑
i

ωinrϵinr (ζnr)

χinr + ωinr = 1 (πinr)

ηinrk + βfixed
k χinr = βfixed

k (λinrk)

βk −
∑
i

ηinrk = 0 (φβ
nrk)

sin −
∑
r

ωinr = 0 (θin)

zin +Krsin ≤ Lr (ξinr)
ω, χ, s ∈ R≥0

β, η, z,H ∈ R

Formulation 2 – Primal subproblem

max
µ,α,ζ,µ,λ,φβ ,θ,ξ

∑
nr

µnr −
∑
inr

ϵinrαinr +
∑
inr

πinr

+
∑
inrk

βfixed
k λinrk +

∑
inr

Lrξinr

s.t.
µnr − ζnrϵinr + πinr − θin ≤ 0 (ωinr)

πinr +
∑
k

βfixed
k λinrk ≤ 0 (χinr)

−
∑
i

αinr + ζnr = 0 (Hnr)

−ζnrxink + λinrk − φβ
nrk = 0 (ηinrk)

θin +
∑
r

Krξinr ≤ 0 (sin)∑
r

ξinr = −yin (zin)∑
inr

αinrxink +
∑
nr

φβ
nrk = 0 (βk)

µ, π, λ, θ, φβ ∈ R
α, ζ, ξ ∈ R≤0

Formulation 3 – Dual subproblem

2.2.2 Master problem

min
L,β

L

s.t.
L ≥ L∗ +

∑
n

∑
k

ϕ∗
nk(βk − βfixed

k ) (1)

L ≥ Lbest (2)
L, β ∈ R

Formulation 4 – Master problem

The master problem reduces to finding opti-
mal values for the estimation parameters β.
For each βfixed, after solving the dual subprob-
lem, a Benders cut of the same type as con-
straint (1) is added. Each optimal objective
value serves as a new lower bound on the ob-
jective, enforced in constraint (2). The param-
eters ϕ∗

nk of the Benders cuts in our case are
determined by ϕ∗

nk =
∑

ir λinrk.

3 PRELIMINARY RESULTS

To test our approach, we conduct experiments on a binary logit model. A mode choice problem
between two alternatives, public transport (pt) and car, is considered. The systematic utilities
of the alternatives are:

Vcar = βtime · traveltimecar
Vpt = βtime · traveltimept

The dataset is extracted from revealed preference data on mode choice collected in 1987 for the
Netherlands Railways, consisting of 228 respondents (CASE, 2017). Experiments are performed
using GUROBI 9.5.0 (Gurobi Optimization, LLC, 2021) on a 2.6 GHz 6-Core Intel Core i7
processor with 16 GB of RAM, with a three hour time limit per instance. Our proposed Benders
approach is benchmarked against PandasBiogeme (Bierlaire, 2020) and the full MILP, comparing
the objective values, the parameter values, and the runtimes. Biogeme’s objective function
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is the log-likelihood (LL), which is approximated by the simulated log-likelihood (sLL), the
MILP objective. For comparison, the LL is also evaluated using the estimated parameters from
decomposition and full MILP. We take random subsets of individuals from the population to get
instances that are manageable for the MILP. The results shown in Table 1 highlight the following:
1. On average, the decomposition solves the problem over 30 to 60 times faster, 2. comparing the
optimal solution values for the full MILP and our decomposition reveals differences, and 3. these
differences are small for the objective function and more significant for the estimated parameters.
Although a Benders decomposition is an exact approach, our formulation contains mathematical

N R LL-Bio LL-D LL-M sLL-D sLL-M B-Bio B-D B-M T-D T-M
20 50 -12.3029 -12.4934 -12.4443 -12.658 -12.6074 -1.5579 -0.9704 -1.0481 10.0613 64.9419
20 100 -12.3029 -12.4109 -12.3948 -12.2581 -12.2116 -1.5579 -1.1097 -1.1432 9.9023 403.6936
20 200 -12.3029 -12.4633 -12.3778 -12.6478 -12.2834 -1.5579 -2.1604 -1.1823 16.9385 1117.0644
50 50 -30.2645 -30.683 -30.3258 -31.0302 -30.8476 -1.4095 -0.9354 -1.2226 29.7795 286.6792
50 100 -30.2645 -30.481 -30.3258 -31.0396 -30.4611 -1.4095 -1.7825 -1.2226 65.0063 1558.6037
50 200 -30.2645 -30.2825 -30.3254 -30.6917 -30.5655 -1.4095 -1.3072 -1.2232 98.2058 5375.6553
100 50 -64.8827 -65.3962 -64.8978 -65.8014 -65.2044 -0.9481 -0.6117 -0.889 28.7805 2820.2287
100 100 -64.8827 -66.0306 -64.8828 -67.419 -65.7837 -0.9481 -0.4513 -0.9431 274.1626 4346.0671
100 200 -64.8827 -64.9245 -64.8933 -66.0181 -65.6991 -0.9481 -0.8502 -0.8987 295.7408 10800+
200 50 -122.6885 -122.6895 -122.7352 -124.0274 -123.5507 -1.31 -1.322 -1.3901 120.5793 1476.1851
200 100 -122.6885 -122.7386 -122.92 -124.2428 -124.0001 -1.31 -1.3929 -1.4898 327.2528 10800+
200 200 -122.6885 -122.7213 -123.3417 -124.1058 -124.7073 -1.31 -1.377 -1.0213 1262.7548 10800+

Table 1 – Comparing our decomposition method with the full MILP and PandasBiogeme
(N = population size, R = number of draws, LL = log-likelihood , sLL = simulated log-likelihood,
B = βtime, T = time (sec.), Bio = Biogeme, D = decomposition, M = MILP)

aspects that may currently prevent the convergence to the real global optimum. As mentioned in
the methodology, a possible explanation for the deviations is the fact that information about the
master variables is maintained in the matrix of the dual. Other explanations include numerical
issues, stemming for example from the linearization of the logarithm or the way certain solvers
handle specific constraints.

4 FUTURE WORK

This is ongoing work. We are currently investigating the cause of the deviations between the
optimal values from the decomposition and the full MILP, as well as testing extensions and
performance on various advanced discrete choice models. Additional results obtained by the
time of the conference will of course be included in the presentation.

References
Benders, Jacques F. 1962. Partitioning procedures for solving mixed-variables programming problems.

Numerische mathematik, 4(1), 238–252.
Bierlaire, Michel. 2003. BIOGEME: A free package for the estimation of discrete choice models. In: Swiss

transport research conference.
Bierlaire, Michel. 2020. A short introduction to PandasBiogeme. A short introduction to PandasBiogeme.
CASE, NETHERLANDS MODE CHOICE. 2017. Data collection.
Fernández Antolín, Anna. 2018. Dealing with Correlations in Discrete Choice Models. Tech. rept. EPFL.
Goodfellow, Ian, Bengio, Yoshua, & Courville, Aaron. 2016. Machine learning basics. Deep learning,

1(7), 98–164.
Gurobi Optimization, LLC. 2021. Gurobi Optimizer Reference Manual.
Hauschild, T, & Jentschel, M. 2001. Comparison of maximum likelihood estimation and chi-square

statistics applied to counting experiments. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457(1-2), 384–401.

Train, Kenneth E. 2009. Discrete choice methods with simulation. Cambridge university press.

TRISTAN XI Symposium Original abstract submittal


	INTRODUCTION
	METHODOLOGY
	MILP formulation
	Benders decomposition approach
	Subproblem
	Master problem


	PRELIMINARY RESULTS
	FUTURE WORK

