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Abstract

Applications of activity-based models for the estimation of transport demand have demon-
strated to achieve greater behavioural realism than traditional trip-based models. However,
state-of-the art models focus on single-day schedules as focal points to their estimations,
thus ignoring fundamental dynamics that explain individual behaviour over longer pe-
riods of time. Several authors have highlighted the importance of multiday analyses in
activity-travel contexts, which are still lacking in many state-of-the-art framework. In
this paper, we present an extension of the OASIS framework, an integrated model for the
simulation of single day schedules, to include intrapersonal interactions influencing longer
term decisions. We formulate the multiday problem as a multiobjective optimisation
problem where each day d is associated with a utility Ud. We consider an activity-based
set up where individuals maximise the total utility of their schedules over multiple days
(e.g. week). We discuss implications and requirements of this formulation, and illustrate
the methodology with chosen examples.
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1 Introduction

Activity-based models (ABMs) stem from the fundamental assumption that travel demand
is derived from the need to perform activities, rooted in a spatiotemporal context, and
influenced by personal and environmental factors. By focusing on individuals and explicitly
considering these interactions, ABMs aim to be more behaviourally realistic than tradi-
tional trip-based models, and to provide more flexible and targeted insights on individual
mobility. Successful applications of activity-based models have demonstrated the added
value of shifting the focus to individuals and their activities. Two main approaches can be
cited: utility-based and rule-based models. The scheduling process is a result of random
utility maximisation for the former, and the satisfaction of a set of spatio-temporal rules
for the latter. While historically both approaches were considered contradictory, there has
been increased research in hybrid models which combine elements from either theory.

In practice, most operational activity-based models have focused on single-day analyses.
This common simplifying assumption greatly limits the behavioural realism of the models,
as they are unable to properly capture the dynamics and processes involved in the
scheduling of activities over multiple days. Decisions taken daily are affected by both
habits built over time, and forward-looking behaviour (Bierlaire et al., 2021), where
individuals decide based on the expected outcomes of future decisions. In addition, some
constraints are not necessarily applicable on a 24h period, but on longer periods of time
(e.g. shopping frequency which becomes more constraining the longer the individual goes
without necessities). In order to realistically model the activity-travel behaviour, it is
crucial to explicitly integrate these elements.

In this paper, we present and discuss assumptions and methodological requirements to
extend a single-day scheduling framework to a multiday scope. We focus particularly on the
OASIS framework. OASIS is an integrated framework to simulate daily activity schedules
by considering all choice dimensions (activity participation, timing decisions, mode and
location choice) simultaneously (Pougala et al., 2022). The current implementation is
an optimisation model where the schedule utility of a single day is maximised, subject
to constraints (including a 24h time budget). We do not intend in this paper to present
an operational multiday activity scehduler, but instead discuss different avenues to be
explored to address this issue: including methodological extensions, modelling assumptions,
and data requirements.

In Section 2, we present relevant research on the development of multiday activity-based
models. In Section 3, we introduce the single-day OASIS framework, the assumptions
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and methodology to accommodate multiday considerations into the model. Finally, we
illustrate the preliminary modelling additions with selected examples from the MOBIS
dataset (Molloy et al., 2022).

2 Literature review

Many authors have identified a significant limitation of current activity-based models:
the majority of models focus on the simulation of a single day, thus ignoring significant
dynamics and correlations that arise from the scheduling over multiple days or longer
periods of time (e.g. Roorda and Ruiz, 2008; Calastri et al., 2020). However, it is
agreed that there exist specific intrapersonal factors that influence the scheduling process.
Roorda and Ruiz (2008) formulate the hypotheses that a person activity/travel planning
behaviour depends on their behaviour on other days of the week, and that there are two
main components to this dynamic behaviour:

1. same-day and next-day substitution effects for activities and trips, and
2. latent propensity to engage in some activities or to choose a specific mode of

transportation.

One reason for the lack of research on multiday dynamics is the lack of available longitudinal
data, which contains sufficient information to calibrate a multiday ABM. This leads several
authors to propose methodologies to derive intrapersonal indicators from single-day trip
data (e.g. Arentze et al., 2011; Hilgert et al., 2017). It is an effective solution to circumvent
the data issue, but can introduce significant biases in the outputs as many behavioural
assumptions must be taken with limited possibilities of validating them.

In ABM research, most studies on intrapersonal variability focus on specific aspects of
the scheduling process but not on the activity-travel behaviour as a whole (Zhang et al.,
2021). For example, some authors investigate the impact of multiday dynamics on activity
generation only (e.g. Nurul Habib and Miller, 2008; Arentze et al., 2011).

Nurul Habib and Miller (2008) address the issue of activity generation (i.e. generating sets
of feasible activities to be scheduled), for a week time-frame. They solve a utility-based
model for each day of the week, and include in the utility functions for each day the
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frequency of participation for each activity on the previous day. Their assumption is that
the activities that are considered for each day are influenced by the activities that were
actually performed previously. They find that estimating individual daily models with
previous-day effect yields better model fit than estimating an aggregated model over the
week.

Arentze et al. (2011) also introduce multiday considerations for dynamic activity generation.
More specifically, they propose a methodology to generate activities for multiple days by
using one-day observations from trip diary data. They assume that each observation is
a draw from a long-term distribution of activity patterns. They perform random utility
maximisation, and consider that the utilities of the activity patterns are dependent on the
time elapsed since the last performed activity. In addition, they postulate the existence of
individual preferences

On the other hand, Zhang et al. (2021) model intrapersonal (day-to-day) variability
of full activity-travel patterns, represented as spatio-temporal networks, with a bi-level
multinomial logit model (MNL). The first level models the utility of choosing a represen-
tative pattern with respect to the day of the week, while the second level explains the
alternative-specific constants of the first level with socio-demographic characteristis.

One common limitation of these models is that the multiday dynamics depend solely on
the past, and decisions for future days are ignored. In addition, when multiple days are
considered, the focus remains on the correlations between days, and scheduling dynamics
within a day take less priority.

Calastri et al. (2020) argue that both within and between days correlations must be
taken into account in order to develop realistic multiday activity-based models. They
propose different specifications of the MDCEV (Multiple Discrete-Continuours Extreme
Value model) in order to integrate and test the effects of these correlations. In their first
specification, they consider day-specific non-additive utility functions and time constraints.
In the second case, they consider correlated and additive utility functions.

In this research, we propose some considerations to develop a methodology for the
simulation of multiday activity-travel scheduling, within the scope of the OASIS framework.
This framework integrates all choice dimensions simultaneously in order to capture
scheduling trade-offs, which implies a significant level of complexity when the model is
scaled up to simulate multiple correlated days.
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3 Methodology

3.1 OASIS framework

In this section, we briefly introduce the OASIS framework (Pougala et al., 2022). The
framework (Fig. 1) is composed of two main elements:

1. A simulation model that outputs distributions of feasible schedules for given indi-
viduals, based on a mixed-integer optimisation model where the objective function
is the utility of the schedule.

2. An estimation component to calibrate the parameters of the said utility function.

The methodology of the simulation framework is built upon first behavioural principles:

1. Individuals have a time budget which constrains their activity schedules. Considering
both in and out of home activities, the total duration of the schedule must be equal
to the available budget.

2. Each considered activity a is associated with a utility Uan. This utility translates
the satisfaction derived by the individual by performing the activity. We assume
this utility to be time-dependent.

3. The scheduling process itself is assumed to be driven by the desire to maximise the
total satisfaction, or utility, provided by the activities subject to the given time
budget constraint.

3.1.1 Simulation

The scheduling process for a given individual n, a set of activities to be scheduled An, and
sets of possible modes Mn and La,n is summarised in 1. The set of estimated parameters
βa,n is also provided as input.

The objective function of the maximisation problem is the utility function of the schedule.
This function is expressed as a sum of a deterministic element and an error term (Eq.1).
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Figure 1: OASIS framework

Estimation

Data Literature

Parameters βn

Optimisation Ω

Synthetic individual n

Disturbances ε

Schedule Sn
ε

Indicators

We assume the distribution of the error term to be known.

US = VS + εS (1)

The decision variables (activity participation, start time, duration, sequence,...) are chosen
such as to maximise the utility of the schedule subject to constrained. For a draw of the
error term εrS, the maximisation problem becomes deterministic, and yields one optimal
schedule Sr which is a draw from the distribution of schedules for n.

The constraints of the optimisation problem can be classified in two categories:

1. Mathematical constraints: they ensure that the resulting schedule is valid. For
example, the time budget T cannot be exceeded, activities cannot overlap,...

2. Context-dependent constraints: they are additional rules that influence the activity-
travel behaviour. For example, some activities must take precedence over others
(e.g. picking up children from school must happen after they were picked up),...

As defined in Pougala et al. (2022), the schedule utility US is the sum of a generic utility U
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Algorithm 1 Simulation of activity schedules
Initialise n, βn, An, Mn, Ln

for r = 1,2,...,R do
Draw εrS from distribution of error terms.
Draw schedule Sr

n by solving Ω = maxUS(Xn, βn, ε
r
S) s.t. constraints

associated with the whole schedule and utility components capturing the activity-travel
behaviour:

US = U +
A−1∑
a=0

(Uparticipation
a + U start time

a + Uduration
a +

A−1∑
b=0

U travel
a,b ). (2)

The components and the associated assumptions are defined as follows:

1. A generic utility U that captures aspects of the schedule that are not associated
with any activity (e.g. resource availability at the level of the household).

2. The utility Uparticipation
a associated with the participation of the activity a, irrespective

of its starting time and duration.

Uparticipation
a = γa + βcostca + εparticipation, (3)

where γa and βcost are unknown parameters to be estimated from data, and
εparticipation is an error term.

3. The utility U start time
a , which captures the perceived penalty created by deviations

from the preferred starting time.

U start time
a = θearly

a max(0, x∗
a − xa) + θlate

a max(0, xa − x∗
a) + εstart time, (4)

where θearly
a ≤ 0 and θlate

a ≤ 0 are unknown parameters to be estimated from data,
and εstart time is an error term.
The first (resp. second) term captures the disutility of starting the activity earlier
(resp. later) than the preferred starting time.

4. The utility Uduration
a associated with duration. This term captures the perceived

penalty created by deviations from the preferred duration.
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Uduration
a = θshort

a max(0, τ ∗a − τa) + θlong
a max(0, τa − τ ∗a ) + εduration (5)

where θshort
a ≤ 0 and θlong

a ≤ 0 are unknown parameters to be estimated from data,
and εduration is an error term. Similarly to the specification of start time, the first
(resp. second) term captures the disutility of performing the activity for a shorter
(resp. longer) duration than the preferred one,

5. For each pair of locations (ℓa, ℓb), respectively, the locations of activities a and b

with a ̸= b, the utility Ua,b
travel associated with the trip from ℓa to ℓb. irrespective of

the travel time. This term is composed of the penalty associated with the travel
time ρab, and other travel variables (including variables such as cost, level of service,
etc.) Here, we illustrate the framework with a specification involving travel cost. It
also includes an error term, capturing the unobserved variables.

U travel
a,b = βt,timeρab + βt,costct + εtravel (6)

where βt,time and βt,cost are unknown parameters to be estimated from data, and
εtravel is an error term.

The schedules generated by the simulator must be feasible, according to a set of constraints
defined at the level of the individual or the household by the modeller. For example, a
schedule is feasible if:

• it does not exceed the maximum (time or cost) budget,
• each activity starts when the trip following the previous activity is finished,
• trips using mode m are only made if and when m is available,
• each activity meets its respective requirements (e.g. participation of other members

of the household, feasible time windows, follows/precedes another activity)

Individuals are assumed to choose the schedule with the highest utility for a given set
of parameters, and subject to constraints. The decision variables of the maximisation
problem are the following:

• ωa: binary participation variable,
• zab: binary succession variable,
• xa: start time,

9
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• τa: duration.

The objective function is derived from (2):

max
ω,z,x,τ

U(ω, z, x, τ) +
A∑

a=0

ωa(U
participation
a + U start time

a + Uduration
a ) +

A∑
a=0

A∑
b=0

zab(U
travel
a,b ). (7)

The constraints are∑
a

∑
b

(ωaτa + zabρab) = T, (8)∑
a

∑
b

(ωaca + zabκab) ≤ B, (9)

ωdawn = ωdusk = 1, (10)

τa ≥ ωaτ
min
a , ∀a ∈ A, (11)

τa ≤ ωaT, ∀a ∈ A, (12)

zab + zba ≤ 1, ∀a, b ∈ A, a ̸= b, (13)

za,dawn = zdusk,a = 0, ∀a ∈ A, (14)∑
a

zab = ωb, ∀b ∈ A, b ̸= dawn, (15)∑
b

zab = ωa, ∀a ∈ A, a ̸= dusk, (16)

(zab − 1)T ≤ xa + τa + zabρab − xb, ∀a, b ∈ A, a ̸= b, (17)

(1− zab)T ≥ xa + τa + zabρab − xb, ∀a, b ∈ A, a ̸= b, (18)∑
a∈Gk

ωa, ≤ 1 k = 1, . . . , K, (19)

αm
a = 1 ∀a ∈ Ghome (20)

ωa ≤ αm
a ∀a ∈ Am (21)

ωa ≥ ωb + zab − 1 ∀a ∈ A, b ∈ A \Ghome (22)

ωb ≥ ωa + zab − 1 ∀a ∈ A, b ∈ A \Ghome (23)

xa ≥ γ−
a , ∀a ∈ A, (24)

xa + τa ≤ γ+
a , ∀a ∈ A. (25)

Equation (8) constrains the total time assigned to the activities in the schedule (sums
of durations and travel times) to be equal to the time horizon. Similarly, equation (9)
constrains the total cost of the schedule (sums of the costs of participating and travelling
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to the activities in the schedule) to not exceed the maximum budget. Equation (10)
ensures that each schedule begins and ends with the dummy activities dawn and dusk.
Equations (11) and (12) enforce consistency with the activity duration by requiring the
activity to have a duration greater or equal than the minimal duration (??) and for the
activity to have zero duration if it does not take place. Equations (13)-(17) constrain
the sequence of the activities: (13) ensures that two activities a and b can only follow
each other once (thus can only be scheduled once). As it is defined for distinct activities
only, it also ensures that an activity cannot follow itself. Equations (14)-(16) state that
each activity has only one predecessor (excluding the first activity), and each activity
only one successor (excluding the last activity). Equation (17) enforces time consistency
between two consecutive activities (with travel time ρab). Equation (19) ensures that
only one activity within a group of duplicates G is selected. Equations (20)-(23) define
the constraints related to the choice of mode of transportation. (20) ensures that all
private modes m are always available for activities (or trips) starting from home. (21)
only allows alternatives associated with a private mode m to take place if m is available,
while (22) and (23) enforce mode consistency between two consecutive activities, excluding
returns home where a different (private) mode can be chosen. Finally, (24) and (25) are
time-window constraints.

3.2 Multiday analysis

3.2.1 Hypotheses

The first behavioural principles at the core of the single-day framework still hold in
the multiday case. The extension to multiday is done by relaxing the assumption that
days are scheduled independently, but rather, that each day is planned by considering
constraints, preferences and decisions taken within a larger time horizon. There are three
main mechanisms which influence decisions over time (Bierlaire et al., 2021):

1. changes in external conditions over time,
2. habitual behaviour,
3. forward-looking planning.

The second and third points are behavioural processes that are specific to each individual.

11
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Habits translate the ability of the decision-maker to learn from past experiences, and
influence the preferences and perception of current options. On the other hand, forward-
looking planning affects current decisions by anticipating future outcomes and their
associated utility. For the scope of this research, we focus on the integration of habits to
introduce correlation between days. Habitual behaviour and learning can considered by
including dedicated terms in the utility function, but also by calibrating the parameters
such that the generated schedules match habitual patterns of activities, or activity motifs
(Schultheiss, 2021).

3.2.2 New definitions

The multiday extension can be considered on multiple levels:

1. Input:
• Preferences: The assumption that individuals have desired start times x∗

a and
τ ∗a for each activity still holds in the multiday case. However, this preference
might depend on the day d. For example, an individual may prefer to start
working at 08:30 on Mondays, but at 09:00 on Tuesdays because they have
to escort their children to school. In addition, we consider the preference for
activity frequency f ∗

a , which is the number of times that an individual prefers
to perform the activity in the time horizon T. We can therefore differentiate
regular from occasional activities (e.g. work vs. leisure). We also consider a
preferred day d∗a for participation to activity a. f ∗

a and d∗a are included in the
daily utility functions Ud

S.
2. Model:

• Time budget: considering a time horizon T of D = 1, 2..., d days, the
time budget can be increased from 24h to 24d hours. This implies that a
specific activity a can potentially be scheduled on any day d, depending on the
preferences and flexibility of the individual. This reflects more closely activity
planning behaviour, by allowing some activities to be scheduled at a later date
if it increases the overall utility.

• Objective function: Each day d of the time horizon is associated with a time-
dependent utility function Ud

S (Eq. (2)). However, we now solve a multiobjective
optimisation problem, where the objective function is the weighted sum of the
daily schedules over the time horizon (Eq. (26))
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Ω = max
ω,z,x,τ

∑
d

wdU
d
S (26)

• Decision variables: the decision variables the same defined for the single day
problem. In the multiday case, the decision variables ω, z,x, τ are vectors of
size T with T the number of days (time horizon). Each element of the vector
is the decision for day d.

• Daily weights: The multiobjective optimisation defined in Eq. (26) is a
weighted sum of utilities. The weights translate a priority between days, i.e.
we assume that days are not considered equally in terms of activity utility. For
example, if we distinguish week days vs. weekends, we can consider that the
former have higher priority in terms of scheduling. This implies that deviations
from preferences on these higher priority days would be more penalised than
on other days.

Table 1 summarises the main methodological differences between the single-day and the
multiday simulator.

Table 1: Methodological differences between single-day and multiday framework

Feature Single day Multiday

Time horizon T 1 day d days
Objective function Schedule utility US Multi-objective

∑
dwdU

d
S ∀d ∈ T

Decision variables Specific to activities Specific to days and activities
Constraints Specific to activities Specific to days and activities
Preferences Start time, duration Daily start time and duration, frequency over T

3.2.3 Utility function

Considering a day d in the time horizon, the multiday utility function is presented in
Equation (27).

Ud
S = U +

A−1∑
a=0

(Uparticipation
a,d + U start time

a,d + Uduration
a,d +

A−1∑
b=0

U travel
a,b,d ). (27)
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In particular, the terms for start time and duration are day-specific, which implies that
individuals have different sensitivities towards deviations from their preferred timings
based on the day of the week. It may also imply that scheduling preferences are also
specific to the day.

The objective function of the optimisation problem is also updated as we now solve a
multiobjective optimisation problem (Eq. (26)). The weights ωd translate the assumption
that individuals prioritise certain days when making their multiday scheduling decisions.
For instance, some days might be more contraining than others, meaning that the overall
scheduling process will tend to satisfy constraints of this specific day more thoroughly
than other, more flexible days.

The weights are difficult to define as they cannot be directly observed. However, analysing
frequency of activity participation over multiple days can provide insights on trends on
preferred days.

3.2.4 Constraints

As we assume that multiple days are correlated, the assumption that schedules should
start and end at home can be relaxed. Indeed, it is now more likely to observe schedules
with overnight activities (e.g. leisure) which would shift the return home of the next day
or to a later start time. The dawn and dusk variables make less sense in this context, and
can be redefined in the following way:

1. We introduce the dummy variables first and last, which respectively identify the first
and last day of the time horizon. These variables are helpful to enforce consistency
constraints across days: each day except last should have only one successor and,
except first, one predecessor. In addition, the first activity of day d should be the
same as the last activity of day d− 1. Similarly, the first location of day d should be
the same as the last location of day d− 1. Regarding mode, the previous consistency
constraints apply: the mode can change if the individual returns home between the
end of the current day and the start of the new one.

2. We consider that the first activity (d = 0) of the first schedule should be dawn.
Similarly, the last activity of the last schedule (d = T ) should be dusk. For the
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other days (0 < d < T ), the first activity can either be dawn or the last activity
of the previous day, and the last activity can either be dusk or any other activity
(including travel).

3. The schedule of each day Sd is still constrained to the time budget of Td = 24h. The
overall time budget can therefore be written T = nTd, where n is a strictly positive
integer indicating the number of days to be scheduled.

Considering Ad the set of nd activities of day d, with adfirst the first activity of the day and
adlast the last activity of the day, we can add the multiday consistency constraints (28)-(30)
to the problem.

Constraints (8)-(25) defined for the single day problem still apply for each day d.

ωd=0
dawn = ωd=T

dusk = 1, (28)

ωd
afirst

= ωd−1
alast

, ∀0 < d ≤ T (29)

zb,afirst = zalast,b = 0, ∀b ∈ Ad, (30)

4 Empirical investigation

We test the modified OASIS framework to simulate multiday schedules for a sample
of individuals from the MOBIS dataset (Molloy et al., 2022). The MOBIS dataset is
a longitudinal dataset conducted in Switzerland, and which contains 8 weeks of GPS
traces for 3680 respondents. For the analyses presented in this paper, and for the sake of
efficiency, we have randomly selected a subsample of 460 respondents.

In this section, we present first the implementation of the modelling hypotheses presented
in Section 3.2. Then, we illustrate the output of the framework for a small problem. We
discuss limitations and identify the axes that should be the focus of future research.
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4.1 Preferences

One crucial hypothesis of the multiday analysis is that individuals’ preferences for activity
timings are specific to the day, meaning that people do not penalise equally schedule
deviations from their preferences. The preferences might also be different depending on
the type of day. The most intuitive categorisation of days is weekdays (Monday to Friday)
versus weekends (Saturday to Sunday).

By analysing the dataset, we observe a behaviour that seems to confirm this assumption
(Figure 2). For the work activity (Figure 2(a)), the distribution of start times shows that
this activity is significantly more present in weekday schedules as opposed to weekends. In
addition, the weekday distribution presents two peaks at 6:00 and at 11:00, whereas the
weekend distribution is more uniform. The same observations can be made for education.

For leisure (Figure 2(c)), we see that the distributions for weekday and weekends are
comparable in terms of frequency counts, with a higher peak in the evening at 17:00, and
earlier in the day at 13:00 for weekends. Both sets present a significant peak at midnight,
indicating that leisure is often scheduled overnight.

The conclusions for shopping (Figure 2(d)) are similar to leisure: on weekdays the
distribution shows a peak in the second half of the day (between 14:00 and 17:00), while
on weekends the start times are more evenly distributed during the day.

These observations support our assumptions: the preferences towards activities is different
depending on the day. Some activities are scheduled more or less often, and the preferred
start times and durations are different.

We integrate these activity and day-specific preferences for start time and duration to the
model by fitting log-normal distributions to the observed schedules (start time, duration,
and frequency) of the sample over 8 weeks. The parameters of these distributions are
reported in Table 2. For each simulation and individual, we draw values from these
distributions, that will be used as their preferred start time x∗

a,d, duration τ ∗a,d and activity
frequency f ∗

a,d.

Regarding activity participation, we observe notable trends for the weekly frequency
(Figure 3) which is defined as the number of days in a week when a given activity is
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Figure 2: Distribution of start times (Mon-Fri vs. Sat-Sun) for different activities.

(a) Work (b) Education

(c) Leisure (d) Shopping

Table 2: Desired times distributions in sample

Day Activity Start time Duration

Weekdays

Home Log-N (8.7,−4.1, 2.8) Log-N (0.34,−5.5, 10.3)
Work Log-N (0.15,−14.7, 24.0) Log-N (1.4, 0, 1.6)
Education Log-N (0.14,−11.8, 21.8) Log-N (0.74,−0.51, 2.3)
Leisure Log-N (9.1,−4.8, 4.0) Log-N (1.3, 0, 0.88)
Shopping Log-N (0.015,−204.1, 216.9) Log-N (0.85, 0, 0.27)

Weekends

Home Log-N (8.7,−4.1, 2.8) Log-N (0.49,−3.9, 9.4)
Work Log-N (0.06,−81.1, 91.3) Log-N (1.7, 0.06, 1.4)
Education Log-N (0.35, 2.9, 6.9) Log-N (1.6, 0.06, 1.4)
Leisure Log-N (8.8,−6.8, 4.1) Log-N (1.3, 0, 0.68)
Shopping Log-N (0.012,−244.3, 256.2) Log-N (0.90, 0, 0.30)
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scheduled at least once, and the daily frequency (Figure 4), which is the number of time
an activity is performed in a given day.

For weekly participation, we notice that work (Fig. 3(a)) is a very regular activity, with
a majority of individuals working for 4 days or more per week. Education (Fig. 3(b))
is scheduled less frequently (mostly once per week), but it is also regular to the extent
that this peak is significant as compared to the other options. This indicates a fairly
low variability across individuals and weeks. On the other hand, shopping but especially
leisure have less defined peaks, and the participation remains the same across a wider
range (from once to 5 times per week for leisure, and from once to three times per week
for shopping). Contrasted with work and education, these activities seem more occasional,
or irregular in terms of weekly patterns.

Figure 3: Distribution of weekly participation frequency for different activities.

(a) Work (b) Education

(c) Leisure (d) Shopping

The distributions of daily participation frequency are very similar across activities and

18



From one-day to multiday activity scheduling 10-12th May, 2023

across days. For work, education and shopping (Figs. 4(a), 4(b) and 4(d)) the majority of
activities are only performed once per day both for weekdays and weekend. As expected,
leisure (Fig. 4(c)) is the activity that is the most frequently performed multiple times in a
day, especially on weekends.

Figure 4: Distribution of daily participation frequency (Mon-Fri vs. Sat-Sun) for different
activities.

(a) Work (b) Education

(c) Leisure (d) Shopping

The results of Figures 3 and 4 can be used to define the frequency preferences for each
individual. In this case, we use the mean of the distributions to approximate these values.
They are reported in Table 3.
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Table 3: Desired weekly and daily activity frequencies

Activity Weekly frequency Daily frequency

Home 4.9 2.6
Work 3.5 2.2
Education 2.4 1.8
Leisure 3.5 2.6
Shopping 2.3 1.7

4.2 Weights

As described in the previous section, the weights of the multiobjective function should
translate a notion of priority between days. In this study, we investigate the impact of
the weights on the optimisation results by testing two configurations:

1. There is no priority between days, and wd = 1 ∀d
2. The scheduling process prioritises weekdays over weekends. Weekdays therefore have

a higher weight, such that the multiobjective function can be written:

Ω = wweekday

∑
i

U i
S + wweekend

∑
j

U j
S ∀i ∈ Dweekdays,∀j ∈ Dweekend

with Dweekdays the set of weekdays (Monday to Friday), and Dweekend the set of
weekend days (Saturday and Sunday). For this second scenario, we arbitrarily define:
wweekday = 0.8 and wweekend = 0.2.

4.3 Utility parameters

For the parameters of the daily utility functions, we use the default OASIS activity-specific
parameters (Pougala et al., 2022). They are summarised in Table 4.
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Table 4: OASIS activity-specific model parameters

Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

1 γeducation 18.7 3.17 5.89 3.79e-09
2 θearly

education -1.35 0.449 -3.01 0.00264
3 θlate

education -1.63 0.416 -3.91 9.05e-05
4 θlong

education -1.14 0.398 -2.86 0.00428
5 θshort

education -1.75 0.457 -3.84 0.000123
6 γleisure 8.74 1.94 4.50 6.79e-06
7 θearly

leisure -0.0996 0.119 -0.836 0.403∗
8 θlate

leisure -0.239 0.115 -2.07 0.0385
9 γshopping 10.5 2.20 4.78 1.74e-06
10 θearly

shopping -1.01 0.287 -3.51 0.000443
11 θlate

shopping -0.858 0.237 -3.63 0.000284
12 γwork 13.1 2.64 4.96 7.16e-07
13 θearly

work -0.619 0.217 -2.85 0.00438
14 θlate

work -0.338 0.168 -2.02 0.0438
15 θlong

work -1.22 0.348 -3.51 0.000441
16 θshort

work -0.932 0.213 -4.37 1.23e-05

4.4 Example

We solve a week of activities for an individual of the MOBIS dataset. The schedules
are illustrated in Figure 5. This individual goes to work every weekday, with at least
one leisure activity in the evening. They go shopping on Friday, and have two overnight
activities between Tuesday and Wednesday, and between Friday and Saturday.

We use this example to test the multiday specification and methodology described in
Section 3.2. For this individual, we provide as input the set of activities home, work,
leisure, shopping, other, to be performed any day during the week, with the penalties and
preferences introduced in Sections 4.1 and 4.3.

We compare the results of the multiday model with the outputs of the single day model that
we run ndays times, to investigate the added value of our methodological extension. This
procedure should be regarded as a proof of concept, and not as a formal validation. We
discuss in this section future work required to evaluate the contribution more formally.

Table 5 summarises the tested scenarios:
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Figure 5: Example week from MOBIS dataset
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1. Scenario 1: We generate 2 consecutive weekdays. We do not consider any hierarchy
between days, and therefore the multiobjective function is not weighted.

2. Scenario 2: We generate one weekend (Saturday and Sunday). We do not consider
any hierarchy between days, and therefore the multiobjective function is not weighted.

3. Scenario 3: We generate a Friday and a Saturday. as the days belong to different
categories, we compare the results of the model with the non-weighted and weighted
objective functions.

Table 5: Simulation scenarii

Model Benchmark Unweighted mul-
tiday

Weighted multi-
day

Scenario 1 (weekdays) ✓ ✓
Scenario 2 (weekends) ✓ ✓
Scenario 3 (Friday-
Saturday))

✓ ✓ ✓

4.4.1 Results

Figure 6 to Figure 11 show selected schedules that were generated from the models for
the scenarios presented in Table 5.

Using the single day OASIS model (Figs. 6 and 9) generally leads to schedules that
resemble the observed activity patterns, especially regarding the work activity. However,
the specification of the model does not allow for overnight activities, and generates
significantly more full days at home than the other models and the observed week. For
Scenario 2, almost all simulated schedules were spent at home.

For both multiday specifications, we observe some overnight activities (significantly more
than in the observed data), and they generate fewer days fully at home. We notice that
the activity durations do not match the preferences (e.g. leisure and other), but more
importantly that there does not seem to be any distinction between days, especially for
the unweigthed model. For example, as seen in Figure 8, work is often scheduled on
Sundays, which does not reflect the majority of schedules in the dataset. On the other
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hand, the inclusion of weights in the multiobjective utility function seems to have an
impact: in Figure 11, we see that, while there is some variety in the activities scheduled
on Friday, Saturday does not vary much.

These preliminary results show the potential of the multiday analysis as opposed to
simulating independent single days, but also highlights some crucial limitations to be
addressed in future work:

• There needs to be a higher differentiation between days. This can either be done
through the utility function or the constraints. Regarding the utility function, the
issue stems from the fact that we have only used one set of parameters for every
simulation. It is therefore important to estimate different parameters per day or
category of day. For the constraints, some context-dependent rules might aid the
realism of the results (e.g. working hours, opening days of shops...).

• In addition to frequency, there needs to be a corrective or penalising term in the
utility function to limit the length or extent of the overnight activities. In this
case, as we have not constrained the return home or estimated preferred timings or
duration at home, the utility for performing certain activities at unrealistic times is
too high.

5 Conclusion and future research

This paper presents a preliminary investigation on the extension of the single-day integrated
activity scheduler with intrapersonal interactions in the form of behaviour over multiple
days. We have started by adapting the specification of the optimisation problem by
including multiday-specific variables and parameters to the utility function, and multiday
constraints. Notably, we have found that relaxing some constraints is necessary to allow
for specific observations such as overnight activities.

In future work, we will improve the methodology by focusing on the following points.
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Figure 6: Example schedules for Scenario 1 (Single day)

Figure 7: Example schedules for Scenario 1 (Multiday unweighted)
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Figure 8: Example schedules for Scenario 2 (Multiday unweighted)

• We will test appropriate utility specifications to better accommodate correlation,
to capture both habits (which we have started investigating in this paper), and
forward-looking behaviour. This could be achieve by including individual expecta-
tions for future activity or schedule utilities in the current function.

• We will investigate how to adapt the single-day parameter estimation methodology
of OASIS. Some questions must be addressed, such as the existence of a different
choice set for each day or category of days (e.g., weekdays vs. weekends)

• Validation will be an important research focus; specifically, developing indicators to
evaluate the simulation performance over longer periods of time. One initial step
would be to use aggregated insights such as activity motifs or patterns (Schultheiss,
2021), which can be compared to the simulated motifs.

• A dedicated case study will be developed, in order to perform sensitivity analyses,
and identify computational or efficiency limits of the framework (e.g. runtime as a
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Figure 9: Example schedules for Scenario 3 (Single day)

function of the number of days to schedule.) This point is especially important to
test the scalability of the OASIS framework to large-scale applications.
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