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Abstract

Activity-based models (ABM) have seen a significant increase in research focus in the
past decade. Based on the fundamental assumption that travel demand is derived from
the need to do activities and time and space constraints (Hagerstraand, 1970; |Chapin),
1974). ABM offer a more flexible and behaviorally centered alternative to traditional
trip-based approaches. Econometric — or utility-based — activity-based models (e.g. |Adler
and Ben-Akiva, 1979; [Bowman and Ben-Akiva, 2001)) postulate that the process of activity
generation and scheduling can be modelled as discrete choices. Individuals derive a utility
from performing activities, and they schedule them as to maximize the total utility. In
this paper, we estimate the parameters of the optimization-based activity-based model
developed by Pougala et al.| (2022)), by defining a discrete choice model where the choices
for each individual are full daily schedules, each associated with a utility. The maximum
likelihood estimators of the parameters (e.g. scheduling penalties, desired start times
and durations, constants...) are evaluated on a choice set of daily schedules sampled
using the Metropolis-Hastings algorithm (Pougala et al., 2021), derived for sample of
individuals from the 2015 Swiss Mobility and Transport Microcensus (Office fédéral de la
statistique and Office fédéral du développement Territorial, 2017). Results show that the
proposed methodology significantly improves the calibration of econometric activity-based
models.

Keywords

Activity-based modeling, parameter estimation, discrete choice modeling, simulation



Parameter estimation for activity-based models 18-20 May 2022

1 Introduction

Activity-based models have been the focus of increasing research efforts in a variety of
domains: including, but not limited to, transport research, energy demand, or epidemiology.
In transportation, they provide a more behaviourally realistic alternative to traditional

trip-based models and aggregate analyses.

A significant limitation and challenge in activity-based modelling research is a consistent
estimation of stable and significant parameters. This requires an often prohibitive amount
of data. In addition, the factors influencing the choice of activity (and related mobility
decisions) are difficult to observe because they stem from interactions in time and space
within and between cultural, social and physical environment. This information is
impossible to obtain from classical data sources (e.g. travel diaries, time use surveys), and
there are very few stated preference surveys - which aim to record behavioural data on
hypothetical or unseen situations - who are dedicated to activities and daily scheduling,

and cover a sufficient population size to calibrate a model.

Another limitation is methodological: many activity-based models in practice are utility-
based (i.e. they are based on the random utility maximisation paradigm applied to activity
scheduling), and use discrete choice models for their analyses. To estimate parameters of
such models, the choice probabilities and likelihood functions must be derived in order to
calibrate the maximum likelihood estimators of the parameters. This requires the modeller
to assume a finite and enumerable choice set, and universal across the population. This
assumption is difficult to justify in the context of activity-based models: if one considers
as schedule to be a discrete alternative subject to choice, then the choice set comprised of
all possible combinations of this schedule is huge. Of course, individuals are only aware of
a fraction of the full choice set, and actually consider an even smaller set when they make
their scheduling decisions, after having discarded alternatives that they deem infeasible.
The challenge for modellers is therefore to generate a choice set that is both realistic and

appropriate to estimate parameters.

In this paper, we estimate the parameters of the utility-based activity-based model
presented in [Pougala et al.| (2022)). To do so, we apply the methodology to sample a choice
set using the Metropolis-Hastings, as presented in |[Pougala et al.| (2021). The process is
illustrated by Fig. [l We use data from the Swiss Mobility and Transport Microcensus
(Office fédéral de la statistique and Office fédéral du développement Territorial, |2017)) to
calibrate two simple models, and discuss the results and their behavioural implications.

Finally, we present further avenues that we are currently undergoing.
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Figure 1: Full activity-based framework (Pougala et al., 2022
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2 Background

Activity-based models originally emerged in the 1970s as a response to the shortcomings

of traditional 4-step models (Vovsha et al. 2005; Castiglione et al. 2014), namely:

1. trips are the unit of analysis and are assumed independent, meaning that correlations
between different trips made by the same individual are not accounted for properly
within the model;

2. models tend to suffer from biases due to unrealistic aggregations in time, space, and
within the population; and

3. space and time constraints are usually not included.

The early works of Hagerstraand| (1970) and (Chapin| (1974) established the fundamental
assumption of activity-based models, that the need to do activities drives the travel
demand in space and time. Consequently, mobility is modelled as a multidimensional
system rather than a set of discrete observations. Unlike traditional trip-based models,
ABMs focus on overall behavioural patterns: decisions are analysed at the level of the
household as opposed to seemingly independent individuals, and dependencies between
events are taken into account (Timmermans| [2003; Pas| [1985)). Specifically, modellers
are interested in the link between activities and travel, often considered within a given

timeframe. Typically, a single day is used as the unit of analysis. The resulting goal of
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studies in the literature is therefore to replicate as accurately as possible the interactions

and considerations involved in the development of a daily schedule by an individual.

While the scheduling process is central to the activity-based research, there is no clear
consensus on the representation and modelling of the daily scheduling process in utility-
based frameworks. Typically, individuals are assumed to schedule activities by maximising
the utility they can expect to gain. The timeframe is often introduced as a time budget
that constrains the overall time expenditure. The scheduling decisions can be modelled
as discrete choices: sequential discrete choice models consider a series of choices done
consecutively with varying amounts of feedback between each step. On the other hand,
joint models also integrate correlations between each aspect of the scheduling decision by
evaluating them simultaneously. Other models do not consider the choice as fully discrete,

but an hybrid consumption of discrete and continuous "goods".

Little work in the field of activity-based modelling specifically tackles estimation of model
parameters. Usually, the parameters of the utility function are either estimated empirically
by calibrating them to the available data or fixed to some arbitrary values (e.g. |Charypar
and Nagel (2005)). The issue with calibration on data is that the available travel surveys
traditionally used for activity-based research are limited to revealed-preferences, and thus
parameters that are inherently linked to the behaviour (such as penalties and preferences)

cannot easily be derived.

Bowman and Ben-Akival (2001)) have estimated the parameters of each tier of their models
(destination and mode choice, time of day, activity pattern model) simultaneously within
the tier by estimating the corresponding discrete choice models (multinomial logit with
alternative sampling for destination and mode choice, multinomial logit for time of day,
nested logit for activity pattern), and sequentially across each tier. Specifically for the
activity pattern model, they estimate different parameters for two subsets of the population
(workers and non-workers). They find that the sequential estimation procedure leads to
consistent parameters estimates but inconsistent standard errors. The estimates are also
different than those obtained with simultaneous estimations. Another notable example is
the work of |Arentze et al|(2011) who estimate the parameters of a multiday dynamic
activity generation model based on one-day travel observations. They consider a mixed
logit framework, and have demonstrated that standard log-likelihood methods can be
used provided the one-day choice probabilities can be derived as a function of the models
parameters. They managed to estimate all of the model parameters, with the exception
of the scale of the error term, which would still require longitudinal data in order to be

properly estimated.
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Allahviranloo and Axhausen (2018]) use a bi-level optimisation model to estimate the mean
and variance of the utility function for independent and joint activities, assuming these
utility functions to be normally distributed across the population. They also estimate the
penalties for schedule deviations (start time and duration). The upper level of their model
has an objective function that maximises the accuracy of their estimation. The lower
level is composed of the utility functions of all considered activities, also to be maximised.
The objective functions of the lower level serve as constraints for the upper level. The
value of the parameters are updated at each iteration using a Genetic Algorithm, and
the model runs until one of the stopping criteria is reached. Their model allows them
to successfully derive probability distributions for the mean and variance of the utility
functions for each type of activity (i.e. school, work, leisure, etc.) and level of household

interaction (independent vs. joint).

Although the parameters of utility functions are crucial elements of any models, methods
to estimate them have not been greatly explored yet for activity-based applications.

Therefore, there is a significant potential for contribution.

3 Model

We model the discrete choice of a full daily schedule for a given individual. A schedule (e.g.
Fig. |2|) is the outcome of one’s decisions with respect to activity participation, activity
location, activity scheduling, and transportation mode choice. It is defined as a sequence
of activities, starting and ending at home, and lasting 24h. An activity a is characterised
by:

a location [, where the activity can be performed,

a start time z,,

a duration 7%,

a cost ¢, for participating in the activity,

an outbound trip, performed with mode of transportation m, to the location of the
next activity. For the last activity of the day, and activities taking place at the same

location, the duration of this trip is 0.

The boundary conditions (start and end of the schedule at home), are modelled as two

dummy activities “dawn” and “dusk”.
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Figure 2: Example output
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Individuals are assumed to be rational and time sensitive, and to select the preferred
schedules among all possible feasible schedules. The preferences of the individual for
each schedule S are captured by a utility function Ug. The time sensitivity is modelled
by considering scheduling preferences: a time interval when the agent prefers to start
the activity: [z, z}], where x; <z, and a range of desired durations [7,, 7.[], where

a’'a
- +
T, <T1,.

We define the schedule utility Ug as the sum of a generic utility U associated with the

whole schedule and utility components capturing the activity-travel behaviour:

A-1
Us = U+Z Up + U2+ U2+ ) (Ul +U3). (1)
b=0

The components and the associated assumptions are defined as follows:

1. A generic utility U that captures aspects of the schedule that are not associated
with any activity.
2. The utility U} associated with the participation of the activity a, irrespective of its

starting time and duration.
U; = /BCOSt * Cq + €1 (2)

3. the utility U? associated with starting time. This term captures the perceived

penalty created by deviations from the preferred starting time.

U =v?2 (3)
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with:

V2 = 0°max(0, z,

— 2,) + 6 max(0, z, — 2", (4)
where 0¢ < 0 and 62 < 0 are unknown parameters to be estimated from data. The
first (resp. second) term captures the disutility of starting the activity earlier (resp.
later) than the preferred starting time.

4. the utility U3 associated with duration. This term captures the perceived penalty
created by deviations from the preferred duration. Here, we illustrate this using a

deterministic (dis)utility:

ug =V} (5)
with:
V2 =B max(0,7, — 74) + B max(0,7, — 1), (6)

where 3¢ < 0 and 82 < 0 are unknown parameters to be estimated from data.
Similarly to the specification of start time, the first (resp. second) term captures
the disutility of performing the activity for a shorter (resp. longer) duration than
the preferred one,

5. For each pair of locations (¢, {;), respectively, the locations of activities a and b
with a # b, the utility U jvb associated with the trip from ¢, to £, irrespective of the
travel time. This term may include variables such as cost, level of service, etc. Here,
we illustrate the framework with a specification involving travel cost. It may also

include an error term, capturing the unobserved variables.
U;{b = /Bt,cost *Ct+ €4 (7)

6. For each pair of locations (¢,,¢;), the utility vab, which captures the penalty

associated with the travel time from ¢, to ¢,. Here, it is assumed to be deterministic:

Uj,b = Va5b (8)
with
Vagjb = 9tpab7 (9)

where 6, is an unknown parameter to be estimated from data, and p,;, is the travel
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time to the next location.
Table|l| summarises the parameters of the problem, that will be estimated. Each parameter

is associated with a given variable. Indices S, a, and n denote respectively a schedule, an

activity and an individual.

Table 1: Parameters to be estimated

Parameter Notation Associated variable

Alternative-specific constants ASCg,, -

Activity-specific constant ASCopn -

Cost of activity participation Beost, Cost ¢,

Penalty start time (early) ¢ Deviation start time 0, .,
Penalty start time (late) 0t Deviation start time g,
Penalty duration (short) B Deviation duration Js -,
Penalty duration (long) B Deviation duration 6,
Travel cost Bh.cost Cost ¢;

Travel time Bt time Time pgp

3.1 Choice set

The universal choice set of the problem (all possible daily schedules for each individual) is
combinatorial and cannot be enumerated. Therefore, we propose strategies to generate a
choice set that can be used to estimate parameters. This choice set must include only
feasible alternatives, regardless of whether they are actually considered by the individual
or not, as illustrated in Fig. 3

Using a smaller subset of alternatives allows to evaluate the maximum likelihood function,
but biases the estimators of the parameters. In order to obtain unbiased parameters, Ben+
Akiva and Lerman| (1985) introduce an alternative specific correction term to the choice
probability. Eq. defines the probability that an individual n chooses an alternative
i, € C,, associated with a deterministic utility V;,. C, is the choice set generated with

the Metropolis-Hastings strategic sampling.
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Figure 3: Choice sets in ABM QPougala et al.l, |2021[)
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The alternative-specific correction term In¢(C,l|i,) is the logarithm of the conditional
probability of sampling the choice set C,, given that ¢,, is the chosen alternative. This formu-
lation implies that if every alternative has equal probability of being chosen, In ¢(C,|i,) = 0
and the estimation of the model on the subset is the same as the estimation on the full
choice set (Frejinger et all 2009).

3.1.1 Random generation

Given a set A, of activities considered by an individual n, N schedules are randomly
generated following the procedure described in Algorithm Each activity a € A, is
associated with a start time z, and a duration 7,, and a travel time p(,; between a pair
of activities (a,b), where b # a. T is the time horizon (e.g. 24h).

The algorithm easily generates a given number of schedules, with uniform probabilities of
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Algorithm 1 Random choice set generation

Choice set C,, < 0, final size N
Current start time x, <— 0, Remaining time 7, < T’
Iteration n < 0
while n < N —1do
while 7. > 0 do
Choose next activity a* from set A,
if first activity of schedule then
Choose nezxt start time x; such that z, < x;, < T — p(4 home)
else
Assign x} < T4 + T + Plaar)
end if
Choose next duration 7 such that 7 <7,
Update z, <2}, 7. T — 2 — 75, n<n+1
end while
Add schedule to C,,
end while
Add chosen schedule to C,,

selecting them. Given the size of the solution space, the limitation of the random generation
is that there is a high chance of generating only schedules that would never be considered

by the individual, and therefore uninformative for the estimation of parameters.

To overcome this challenge, we propose a second approach to generate choice sets with
schedules that have high probabilities of being chosen by the individual based on strategic
sampling with the Metropolis-Hastings algorithm.

3.1.2 Strategic sampling with Metropolis-Hastings

We apply the methodology described in [Pougala et al.| (2021)) to strategically sample the
alternatives from the universal choice set using the Metropolis-Hastings algorithm, and
adding the chosen alternative to the final sample. Algorithm [2| summarises one iteration

of the random walk.

Following Ben-Akiva and Lerman| (1985), we define in Equation the alternative
specific corrective term for a choice set C,, of size J + 1 with J unique alternatives. Each
alternative j is sampled from the target distribution of the Metropolis-Hastings algorithm
with probability g;,, such that ¢;, = 0if j ¢ C,.
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Algorithm 2 Choice set generation with Metropolis-Hastings
n < 0, initialise state with random schedule X,, <+ Sy
while n < ny,., do

Choose operator w
With probability P,, X* < Operator(X,)

Compute acceptance probability a(X,, X*) = min (

b(X*)q(Xn\X*)>
b(Xn)a(X*[Xn)

With probability a/(X,,, X*), X,11 < X*, else X,,11 + X,
end while

q(Culin) = qi H (Z an> (11)

" jeC, \jeC,

4 Case study

The Mobility and Transport Microcensus (MTMC) is a Swiss nationwide survey gathering
insights on the mobility behaviours of local residents (Office fédéral de la statistique
and Office fédéral du développement Territorial, [2017)). Respondents provide their socio-
economic characteristics (e.g. age, gender, income) and those of the other members of
their household. Information on their daily mobility habits and detailed records of their
trips during a reference period (1 day) are also available. The 2015 edition of the MTMC
contains 57’090 individuals, and 43’630 trip diaries. For this study, we estimate the

parameters of a sample of schedules for the residents of Lausanne.
We consider three samples:

1. Workers, including full- and part-time workers,

2. Students,

3. All inhabitants, including workers and students.

For each of these samples, we calibrate two models:

1. Model 1, where we classify activities according to two levels of flexibility, and

estimate the corresponding parameters for both categories.

10
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2. Model 2, where we estimate all activity-specific parameters and constants, as defined
in Table [

We consider 7 different activities: home, work, education, leisure, shopping (buying
non-essential goods), errands and services (buying essential goods and groceries, or using
services e.g. medical appointments, etc.), escort (accompanying someone to an activity).
Following the definition of Pougala et al| (2022), travel is not considered as a standalone

activity.
We make additional simplifications:

e We do not estimate travel parameters, and consider them null in Eq. ,

e We do not estimate scheduling preferences (desired start time and durations).
Instead, we use the modal start times and durations for each activity from the
distribution across the full population of Lausanne (Table . Therefore, we consider
them homogeneous across the population. Note that the home activity is not

associated with a desired start time or duration.

Table 2: Modal times for Lausanne

Activity Start time [hh:mm| Duration [hh:mm]
Work 7:45 4:40

Education 7:32 2:19

Leisure 12:05 0:0

Shopping 12:05 0:05

Errands, services 14:05 0:05

Escort 18:00 0:0

We generate for each individual choice sets of sizes N = 10, 100 with the random generation

and the Metropolis-Hastings algorithm.

4.1 Model 1

In the first model, we consider activity-specific constants, and flexibility-specific pa-
rameters. Each activity is classified in one of two possible degrees of flexibility k €
{Flexible, Not Flexible}. The assumption is that schedule deviations are penalised differ-

ently depending on the flexibility towards the activities. Intuitively, we expect non-flexible

11
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activities to have a more negative impact on the utility function of the schedule. For the
sake of simplification, the initial implementation of model 1 ignores the travel component
to only focus on activity parameters. Table |3| summarises the parameters estimated in
the first model, for a total of 14 parameters. For identification purposes, the constant

associated with the activity home is set to 0.

Table 3: Model 1: Parameters to be estimated

Parameter Notation Activities

Activity-specific constant ASC,,,  All (reference: home)

Penalty start time (early) 6%
Penalty start time (late) 0%
Penalty duration (short) (g
Penalty duration (long) B

Flexible
(Errands, Leisure,
Shopping, Home)

Penalty start time (early) 60%p
Penalty start time (late) 0%
Penalty duration (short)  Sig
Penalty duration (long) B4

Not flexible
(Education, Work,
Escort)

4.2 Model 2

In the second model, we consider activity-specific constants and schedule deviation
parameters. The assumption is that schedule deviations are penalised differently for each
activity. Similarly to the previous model, we focus only on activity parameters and do
not estimate travel penalties. Table [l summarises the parameters estimated in the second
model, for a total of 30 parameters. For identification purposes, the constant and penalties

associated with the activity home are set to 0.

Table 4: Model 2: Parameters to be estimated

Parameter Notation Activities

Activity-specific constant ~ ASC,,,

Penalty start time (early) 6%

Penalty start time (late) 0% All (reference: home)
Penalty duration (short) (3

Penalty duration (long) I

12
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4.3 Results

The model estimates are reported in the appendix, Appendix [A] We only report the
estimates of statistically significant parameters, at a significance level of 5%. In addition,
for model 2 (Table [§ to Table , we only report estimates for the activities work,

education (non-flexible activities) and leisure (flexible activity).

4.3.1 Model 1

For all three samples, we obtain sensible results: all activity-specific constants are positive
as compared to staying at home. It translates the fact that, all else being equal, individuals
prefer performing activities rather than staying at homeE| This can also be explained by
the specification of the utility function which only include parameters that are expected

to be negative (e.g. penalties for schedule deviations).

As expected, all penalties are negative. For workers, the ratios between early and late
penalties are in line with the literature of departure time choice (e.g. (Small, |1982))):
being late is more penalised than being early, both for flexible and non-flexible activities.
For duration, flexible activities running for longer than desired are penalised, but the
parameter for shorter durations is negligible. On the other hand, when the activity is not
flexible, shorter durations than expected are penalised about 4 times more than longer.
This behaviour is also observed among students, although they tend to not penalise flexible
activities starting earlier (the parameter is not statistically significant). With the exception
of the penalty for short durations, the penalties associated with students are usually

smaller in magnitude than for workers. The values of the constants are comparable.

Interestingly, when we look at the entire Lausanne sample, late activities are slightly less
penalised than early, for both flexible and non-flexible activities. Shorter activities are

also more penalised than longer ones.

INote that here we interpret home as an absence of activity, and do not take into account activities
performed at home. This assumption can be relaxed with the condition of a more exhaustive dataset
with records of in-home activities, such as time use surveys.

13
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Figure 4: Distribution of duration for education in generated students sample
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4.3.2 Model 2

In the second model, we include activity-specific penalties in addition to the constants.
The education activity for both students and workers is very highly penalised when the
duration is shorter than the preference. Given the magnitude difference with the other
activities, this seems to be indicative of an imbalance in the choice set. As illustrated
in Fig. 4 in most of the schedules where education is present, its duration is shorter
than the input desired duration, although very close to it. By comparing it with the real
distribution (Fig. [5)), we can see that the mean duration is much longer. These results
highlight the limitation of using homogeneous and fixed desired times across the entire

population.

The same phenomenon can be observed in the parameters of the workers sample, but
we seem to obtain more stable estimates in the full Lausanne sample. In the latter, the
penalties for start times (resp. duration) are almost symmetrical: being early or late (resp.
shorter or longer) are equally penalised. This is not the case for the sub-populations of
workers and students, for whom the asymmetry is observed, especially for start time. As
previously mentioned, we can assume that the asymmetry for the duration penalties is

mainly affected by the bias in the choice set.

14
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Figure 5: Distribution of duration for education in real students sample
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5 Discussion and further work

In this paper, we have presented a procedure to estimate the parameters of the activity-

based model introduced in [Pougala et al.| (2022). The process includes the generation of a

choice set for parameter estimation, with a good variety of alternatives to ensure unbiased
and stable parameter estimates, and with tractable sample probabilities. We have applied
our methodology on a simple, time-dependent and linear in parameters utility function,
and yielded statistically significant and behaviourally sensible results even with a small
number of alternatives in the choice set (10). These results are very promising, and the

model can be further improved by:

e Considering desired timings for each socio-economic category, and generate choice
sets accordingly. Assuming these variables to be randomly distributed instead of
fixed would also allow for greater flexibility.

e Investigating a more complex utility specification by adding non-linear relationships.
For instance, the utility function defined by , which includes a non-linear
effect of activity duration can be considered.

e Similarly, more variables can be added to explain the choice of schedules - such as
socio-economic characteristics.

e Investigating more complex model structures than multinomial logit models. For

instance, the mixed logit model (e.g. by considering randomly distributed parameters

15
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across the population) seems well suited to the problem.

Finally, we have not discussed the matter of validation of the parameters, which is complex
and limited without dedicated resources (e.g. stated-preference survey). Calibrating the
model on a synthetic population would allow to evaluate the performance of the model

with know control variates.
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A Model estimates

A.1 Model 1

Table 5: Estimation results for Model 1 on student population

Param. Rob. Rob. Rob.

Parameter estimate std err t-stat p-value
1 F late -0.474 0.108 -4.38 1.21e-05
2 Flong -0.48 0.145 -3.3  0.951e-04
3 NF early -0.217 0.118 -1.84 0.0665
4  NF late -0.447 0.238 -1.88 0.0605
5  NF short -4.04 1.86 -2.17  0.0303
6 ASC_ Education 7.77 1.54 5.03  4.92e-07
7 ASC_Errands 4.79 1.46 3.27  0.00106
8 ASC_Escort 4.97 1.46 3.41 0.651e-04
9 ASC Leisure 10.4 1.57 6.62 3.54e-11
10 ASC_Shopping 5.86 1.0 5.84  5.33e-09
11  ASC_Work 3.86 1.44 2.69 0.00725

Summary statistics
Number of observations—198
L(0) = —651.9881

L(B) = —273.1573
p* = 0.56
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Parameter estimation for activity-based models

18-20 May 2022

Table 6: Estimation results for Model 1 on worker population

Param.  Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

1 F early -0.813 0.16 -5.09  3.53e-07
2 F late -1.12 0.138  -8.08 6.66e-16
3 Flong -0.569 0.165  -3.45 0.554e-04
4  NF early -0.827 0.160  -5.15 2.58e-07
5 NF late -1.26 0.236  -5.31 1.08e-07
6 NF long -0.789 0.229  -3.45 0.57e-04
7  NF short -3.24 0.555  -5.84 5.30e-09
8 ASC_ Education 10.8 2.50 4.33  1.50e-05
9 ASC_FErrands 7.63 1.28 5.97 2.32e-09
10 ASC_Escort 9.79 1.45 6.77 1.31le-11
11 ASC_ Leisure 15.3 1.38 11.1 0.0

12 ASC_Shopping 12.5 1.38 9.05 0.0

13 ASC_Work 18.5 2.00 9.28 0.0

Summary statistics
Number of observations—528
L(0) = —2030.859

L(B) = —462.2077
P2 =0.77
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18-20 May 2022

Table 7: Estimation results for Model 1 on Lausanne sample

Param.  Rob. Rob.  Rob.
Parameter estimate std err t-stat p-value

1 Fearly -1.01 0.0858 -11.8 0.0

2 F late -0.722 0.0596 -12.1 0.0

3 Flong -0.433 0.165 -3.45  0.554e-04
4  F short -9.79 1.45 -6.74  1.56e-11
5 NF early -1.47 0.148 -9.96 0.0

6 NF late -1.07 0.105 -10.2 0.0

7 NF long -1.36 0.136 -9.99 0.0

8  NF short -1.46 0.154 -9.49 0.0

9 ASC_Education 14.1 0.948 14.8 0.0

10 ASC_Errands 7.27 0.625 11.6 0.0

11 ASC_Escort 10.2 0.76 13.5 0.0

12 ASC_ Leisure 14.5 0.629 23.0 0.0

13 ASC_Shopping 11.6 0.529 22.0 0.0

14 ASC_Work 16.5 0.854 19.3 0.0

Summary statistics

Number of observations=909
L(0) = —8093.839
L(5) = —2610.456
p? =0.68
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Parameter estimation for activity-based models

18-20 May 2022

A.2 Model 2

Table 8: Estimation results for Model 2 on student population

Param. Rob. Rob. Rob.

Parameter estimate std err t¢-stat p-value
1 Education: ASC 17.2 4.54 3.78 1.58e-04
2 Education: early -1.89 0.781 -2.43 0.0153
3  Education: late -2.91 0.948 -3.07 0.00216
4 Education: long -0.195 0.132 -1.48 0.140
5  Education: short -146.0 50.9 -2.87  0.0604
6  Leisure: ASC 15.3 4.48 3.41  6.62e-04
7  Leisure: late -1.88 1.02  -1.84 0.0658
8  Leisure: long -0.828  0.482 -1.72 0.086
9  Leisure: short -3.52 1.97  -1.79 0.074
10 Work: ASC 8.45 2.17 3.90 9.82e-05
11 Work: early -0.684 0.217 -3.15 0.00163
12 Work: late -6.92 1.96  -3.53 4.19e-04
13 Work: long 0.177  0.065 2.72 0.0066
14 Work: short -10.4 3.70  -2.82 0.00479

Summary statistics
Number of observations—198
L(0) = —651.9881

N

L(B) = —172.0351
7* = 0.69
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Parameter estimation for activity-based models

18-20 May 2022

Table 9: Estimation results for Model 2 on worker population

Param. Rob. Rob. Rob.

Parameter estimate std err t-stat p-value
1 Education: ASC 514 10.3 4.99 6.17e-07
2 Education: early -32.9 7.88 -4.17  3.02e-05
3 Education: late -7.56 1.72 -4.40  1.09e-05
4  Education: long -3.96 0.921 -4.30 1.71e-05
5  Education: short -29.6 5.81 -5.09  3.52e-07
6  Leisure: ASC 16.1 2.30 7.00 2.49e-12
7  Leisure: early -1.67 0.621 -2.69 0.0072
8  Leisure: late -1.35 0.248 -5.43 5.64e-08
9  Leisure: long -0.193 0.0958 -2.01 0.0444
10 Work: ASC 23.6 4.77 4.94  7.70e-07
11 Work: early -2.48 0.683 -3.64 2.74e-04
12 Work: late -1.58 0.452  -3.49 4.87e-04
13 Work: long -1.49 0.575  -2.59 0.00963
14  Work: short -3.51 1.32 -2.67 0.00758

Summary statistics
Number of observations=528
L(0) = —2030.859

L(B) = —390.7576

p? =0.79
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Parameter estimation for activity-based models

18-20 May 2022

Table 10: Estimation results for Model 2 on Lausanne sample

Param. Rob. Rob.  Rob.

Parameter estimate std err t¢-stat p-value
1 Education: ASC 17.4 1.44 12.1 0.0
2 Education: early -2.22 0.561 -3.96  7.50e-05
3 Education: late -2.00 0.334 -6.00 2.01e-09
4 Education: long  -1.58 0.255 -6.17  6.74e-10
5  Education: short -1.86 0.212 -8.80 0.0
6  Leisure: ASC 13.5 0.709 19.0 0.0
7 Leisure: early -0.942 0.111 -8.52 0.0
8  Leisure: late -0.59 0.055 -6.8 1.02e-11
9  Leisure: long -0.271 0.055 -4.93  8.22e-07
10 Leisure: short -8.62 1.57 -5.47  4.44e-08
11 Work: ASC 17.6 1.23 14.3 0.0
12 Work: early -1.49 0.3 -4.95 7.41e-07
13 Work: late -1.39 0.224 -6.23  4.56e-10
14  Work: long -1.7 0.205 -8.32 0.0
15  Work: short -1.34 0.179  -7.5  6.28e-14

Summary statistics

Number of observations=909
L(0) = —8093.839
L(5) = —2313.796
p?=0.71
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