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Abstract— This paper presents a novel hybrid framework
for generating and updating a synthetic population. We call
it hybrid because it combines model-based and data-driven
approaches. Existing generators produce a snapshot of synthetic
data that becomes outdated over time, requiring complete re-
generation using the newest datasets for updates. By leveraging
regularly collected data, we propose a method that provides
up-to-date synthetic populations at any given moment with-
out using complete re-generation. Our approach generates a
baseline synthetic population once, using the Markov Chain
Monte Carlo simulation, and projects it over time. In scenarios
where disaggregated real data are unavailable, we project the
synthetic sample by simulating life-changing events. When new
disaggregated real data become available, we calibrate the
projected sample using resampling to account for data collection
biases and projection errors. We implement and test our
approach on 2010, 2015, and 2021 Swiss mobility and transport
micro-census data. To generate the baseline sample we use data
from 2010 and project it to 2021. We compare the projections
of our hybrid approach to existing methods, namely dynamic
projection and resampling. The results demonstrate that the
synthetic sample generated by the hybrid approach improves
the fit to the real data compared to the dynamic projection,
and improves heterogeneity compared to the resampling.

I. INTRODUCTION

In the transportation field, activity-based models (ABM)
are used to analyze the travel behavior of individuals, in
order to forecast the demand and impacts of various policies
[1], [2]. To ensure the robustness of these models across
different scenarios, diverse and unbiased datasets are needed
for testing and calibration. However, obtaining such real
datasets is challenging due to cost and privacy constraints.
Synthetic data offer a solution by combining various data
sources to generate data that meet specific requirements
and reduce bias. Also, ABMs typically require synthetic
data to simulate hypothetical scenarios, such as examining
the impact of measures or policies on people’s behavior or
predicting responses of a specific group to future changes.

Existing synthetic generators use aggregated or disaggre-
gated real data as input, from one or several sources, to
create synthetic samples that replicate the distributions of real
data at a specific time, i.e., synthetic snapshots. This means
that once the initial synthetic population is generated, any
changes in the reference data cannot be integrated into the
synthetic population. However, the real population evolves
through different demographic events, e.g., changing the
marital or employment status, giving birth, or passing away.
Consequently, the synthetic snapshot might become obsolete
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Fig. 1: The independent generation

over time as it no longer reflects the reality [3].
As illustrated in Fig. 1, the current literature suggests that

obtaining up-to-date synthetic data requires re-generating
a new synthetic sample based on the latest real data.
This method, called independent generation, does not track
changes between past, present, and future data and imposes
no relationships between successive iterations of the same
synthetic population across time. This makes the generation
unnecessarily complicated and costly. Firstly, adapting a syn-
thetic generator to a new dataset requires repeating the same,
usually highly problem-specific, procedure from before. Sec-
ondly, most synthetic generators require disaggregated real
data as input to generate a high-quality synthetic sample.
Although regularly collected data, such as census, open many
possibilities for enhancing the quality of synthetic data, to the
best of our knowledge, there is no methodology that exploits
all past data from previous surveys.

Some authors have proposed to project the synthetic
snapshot to capture changes over time, i.e., dynamics, and
test future hypothetical scenarios [4], [5], [6]. All of these
methods contain two steps: generation, i.e., initialization of
the baseline synthetic population, and its projection over
time, i.e., evolution. Since the quality of the projection is
highly dependent on the quality of the baseline sample,
the synthetic sample should be thoroughly validated before
performing the projection.

Once the synthetic sample is generated, the projection step
is usually performed using dynamic projection [4], [5] or
resampling [6]. Dynamic projection simulates specific events
and their impact on desired synthetic attributes, e.g., socio-
demographic characteristics of individuals. On the other
hand, resampling adjusts the synthetic data to match the
marginals of the newly obtained real dataset by randomly
adding or deleting observations. However, both of these
approaches suffer from certain limitations.

Usually, the census data collection initiative does not
track the same individuals over years, resulting in differ-
ent sampling biases in each sample. Because of this, the
dynamic projection method inherently propagates bias from
the baseline population, year by year, which decreases the



Real data 2010 Real data 2015 Real data 2021

Synthetic
generator

Synthetic 2010 Projected 2015

Step 3: Correction

Projected 2021

Step 4: Validation

Step 1: Generation Step 2: Projection

Fig. 2: Hybrid Simulator for Capturing Dynamics of Syn-
thetic Populations

goodness of fit between the projected sample and the most
recent real data. In addition, the projection rates are usually
derived under the assumption that the population follows
similar trends over time, which is not always true. For
instance, unexpected major events, e.g., Covid-19, can lead
to non-representative projected samples compared to the real
data. On the other hand, resampling randomly selects the
individuals to duplicate or delete, which might result in
always choosing people with the same characteristics, hence
reducing the synthetic population heterogeneity.

Once the sample is projected to a specific point in time,
authors validate their results by comparing synthetic distri-
butions against the real ones. However, the limitations of
the projection methods become more significant the further
away in time we try to project, resulting in an accumulated
propagated error that could impact the representativity of
the projected sample. Thus, the validation should not be
performed only once, but regularly.

In this paper, we propose a hybrid simulator that consists
of four parts: generation, dynamic projection, resampling
(i.e., correction), and validation, as shown in Fig. 2. Our
approach is hybrid in the sense that it is both model-based,
due to dynamic projection, and data-driven, due to resam-
pling. We use dynamic projection to simulate life events
when disaggregated real data are not yet available, and once
the new real data are released, we correct projection errors by
adapting the projected marginals according to the new data.
In contrast to other projection methods that only use the past
to generate the future, we also exploit the information from
the present to improve the past.

In our framework, the sample is generated once, and
then regularly updated and validated, which has several
benefits. Firstly, our method maintains the synthetic data
up-to-date and enriches the resulting synthetic sample by
taking into account all available census data. Secondly, due
to correction and validation steps, the projection method is
robust enough to deal with unusual events, and the resulting
sample is less impacted by errors in the generation step, over
long projection horizons. Finally, updating already generated
samples can potentially reduce the data collection cost, since
we can use fewer data for future updates.

The remainder of this paper is organized as follows:
Section II covers a review of the existing methods that
combine different generation and projection methods. In
Section III, we formally describe each part of the hybrid

simulator. Finally, in Sections IV and V we present the results
of comparisons between different methods, summarize the
research contributions, and present some ideas for future
research.

II. RELATED WORK

A lot of research effort has been invested in improving
the algorithms for generating synthetic populations. These
algorithms try to replicate the distributions of the individ-
ual, i.e., one-level generation, and household attributes, i.e.,
multi-level generation, while preserving the representativity
and realism of the real data. An extensive literature review on
the existing individuals and household generation algorithms
has been provided by [7] and [8], respectively. Based on
these studies, both one-level and multi-level generation can
be categorized into three groups: synthetic reconstruction,
e.g., iterative proportional fitting (IPF), iterative propor-
tional updating (IPU); combinatorial optimization, and sta-
tistical learning, e.g., Markov chain Monte Carlo simula-
tion (MCMC), machine learning methods (ML). All these
methods can be appropriate in specific situations and the
performance, e.g., realism, representativity, computational
time, can differ depending on various factors, such as sample
size, number of attributes, structure of the input dataset, etc.
As suggested in [8], there is no consensus on which synthetic
generation method is the best in the general case and the
choice of the algorithm depends on the users’ needs and
available resources.

Consequently, algorithms based on dynamic projection
[4], [5], [9], static projection [10], and resampling [6] have
emerged. These works consider a similar set of attributes:
age and gender at the level of individuals, and household size
and type at the level of the households. Dynamic projection
simulates the effects of death, birth, couple formation, couple
dissolution, and leaving home on the age and gender of
individuals. Static projection, on the other hand, consists of
applying a reconstruction method on the synthetic sample to
modify it according to the latest real aggregated data. Lastly,
resampling randomly adds and removes individuals based
on discrepancies between the marginals of the real data and
the marginals of the projected population. None of the cited
papers propose a combination of projection methods.

As shown in Table I, these papers can be categorized
based on methods used for generation and projection steps.
Interestingly, most of them use synthetic reconstruction
for generating the baseline population. Although statistical
learning methods have shown better results [11], none of
the aforementioned papers use them in the generation step.
This might be because most of the publicly available popu-
lation synthesizers use IPF as the core algorithm [12]. The
generator can be chosen arbitrarily when the projection is
limited to a few attributes. However, it has been shown that
IPF struggles to deliver acceptable results when working
with high-dimensional datasets [13]. Since some algorithms
cannot maintain generation quality with increasing scale,
when performing projection with more attributes, the choice
of the synthetic generator is one of the crucial decisions.
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III. METHODOLOGY

In this section, we provide details on each part of the
developed pipeline, where the output of each phase is the
input to the next one. Although this methodology can be
applied using any dataset, in this paper we focus on the
Swiss Mobility and Transport microcensus data (MTMC)
from 2010, 2015, and 2021, provided by the Swiss Federal
Statistical Office (BFS) [14].

A. Generating and validating the baseline synthetic sample

The baseline sample is generated only once using the
MCMC simulation, more precisely Gibbs sampling (GS)
[11]. Inspired by the methodology introduced in [15], we pro-
pose a simplified adaptation of their algorithm for household
generation and use it to generate individuals instead. The
synthetic sample contains vectors X composed of discrete
random variables that represent individual characteristics. In
the current version of the framework, we generate age Xa,
employment Xe, and gender Xg. The possible values of the
chosen attributes are described in Section IV-A. The goal
of GS is to reproduce the multivariate joint distribution of
these attributes denoted by π(X), by randomly drawing at
each iteration a value of one attribute conditioned on all
others. If N is the number of attributes that we generate,
and A = {Xi|i ∈ {1, ..., N}} is the set of random variables
that describes the attributes of a certain individual, then the
generated value xk of a randomly selected variable Xk ∈ A is
drawn from the conditional distribution π(Xk|A\{Xk}} for
an a priori fixed realization of the random variables defined
by A \ {Xk}, i.e., for Xi = xi,∀i ∈ {1, ..., N} \ {k}.
These conditional distributions are derived from data and
provided as input to the algorithm. Simulated chains of each
attribute should converge to a unique joint distribution within
the specified number of draws. To monitor the convergence
and to identify if the algorithm has reached the stationary
state, we compute the potential scale reduction factor and
the effective sample size. For further explanation on these
metrics, interested readers are referred to [16].

Once the baseline sample is generated, the joint distri-
bution of simulated attributes is compared against the real
data used as a reference. This step is essential to analyze
what percentage of the error is propagated in the projection
step. To validate each characteristic separately, i.e., marginal
distributions, we use standardized root mean squared error
(SRMSE) as shown in (1) [13], [17].

SRMSE =

√√√√√ m∑
i=1

...
n∑

j=1

(π
synth
i,...,j − πreal

i,...,j)
2

Ncnt

m∑
i=1

...

n∑
j=1

πi,...,j

Ncnt

(1)

Here, πsynth and πreal represent the frequency count of
each unique combination of attributes (i, ..., j), in the real
and synthetic samples, respectively, where (m, ..., n) are
the numbers of possible categories of these attributes. Ncnt
denotes the total number of unique combinations of val-
ues for attributes (i, ..., j). In other words, we calculate
the occurrence of unique values for each combination of
arbitrarily chosen real and corresponding synthetic columns
and compare them. We additionally compute the SRMSE to
systematically test all possible combinations of all columns
on different aggregation levels, using the statistical frame-
work proposed by [18]. With an aggregation level, we specify
the number of columns that are jointly assessed. Namely, if
Nv is the set of nv columns in the dataset, for a specified
aggregation level a ∈ {1, 2, 3}, we calculate SRMSE for
all possible

(
nv
a

)
frequency lists. The final result is the

average of all previously calculated SRMSE scores. Note
that although we present only the SRMSE in our results, we
also validate our results using other statistics available in the
framework such as mean absolute error (MAE), coefficient
of determination (R2), and root mean square error (RMSE).

B. Dynamic projection

Let t0 be the year when the baseline synthetic sample is
generated, and tend, where tend > t0, the year to which we
want to project. For each year tn, where t0 < tn < tend,
we simulate the effects of births, deaths, and migrations
on the attributes of the synthetic population. As shown in
Algorithm 1, we update the synthetic sample from time
step tn-1 to time step tn by projecting the age, gender,
and employment of synthetic individuals. The output of
this method is an updated synthetic sample that we call a
projected sample. To simulate each event, we use rates of
people of a certain age and gender that gave birth, died,
immigrated, or emigrated. The rates we use are provided for
each year tn at the aggregated level by the Swiss Federal
Statistical Office [14]. To simulate births, we use data about
the number of births based on the mother’s age and the
number of women within each age group. We compute
fertility rates for each age class by dividing the number of
births by the number of women. For each female individual,
we randomly simulate giving birth using the probability
with respect to the women’s age. To compute mortality



rates, we use the number of deaths per age and gender.
For each individual in the dataset, we randomly remove an
individual from the sample using the corresponding mortality
rate as the binomial probability. Furthermore, we simulate
immigration and emigration by adding or removing people,
using statistical records of net migration per year, age and
gender. The net migration presents the difference between
the number of immigrants and the number of emigrants.
The rates for simulation are computed similarly. Finally, we
deterministically assign the employment status ‘retired’ if
the person is above 65, and ‘under 15’ if the person is under
15, since we do not have access to the employment rates.
For other age categories, we draw the employment status
conditioned on the given age and gender of the person, using
the baseline sample as a reference.

Algorithm 1 Dynamic projection

1: function DYNAMIC PROJECTION(synthetic sample,t0, tend)
2: predictive sample = synthetic sample
3: for i = t0 to tend do
4: increment age(predictive sample);
5: add children(predictive sample, i); ▷ Birth rates
6: remove individuals(predictive sample, i); ▷ Death rates
7: add individuals(predictive sample, i); ▷ Migration rates
8: remove individuals(predictive sample,i);
9: end for

10: draw employment(predictive sample);
11: end function ▷ Return the updated sample

C. Resampling

Let t0 and tc, where tc > t0, be the years when two
consecutive census surveys are performed. We assume that
the two obtained datasets share a portion of respondents with
similar characteristics. Therefore, there is a logical shift in
the distributions that should be captured by dynamic projec-
tion. Since the census data do not track the same individuals
over the years, we cannot identify what portion of the data is
the same, leading to different biases in each census dataset.
Thus, by projecting we propagate the sampling bias from the
year t0. To correct the propagated bias and projection errors,
at year tc, when the new census disaggregated data become
available, we perform resampling as shown in Algorithm 2.

We update the marginals of the projected sample from t0
to tc, based on the age marginals of the new real census
data released at year tc. Comparing the frequency counts of
the age categories between these two samples, we randomly
duplicate or remove individuals from the projected sample
for each age group, in order to achieve a better fit to the most
recent real data. We define a specific threshold whose smaller
value indicates a better fit. Given that most of the simulated
events, such as giving birth, death, migration, etc., are age de-
pendent, we decide to resample only based on this attribute.
Since age is correlated with most of the attributes, changing it
can implicitly impact other highly correlated variables. For
instance, adding more students will consequently increase
the number of individuals who are in education. Since we
recycle people from the synthetic dataset, we have to make
sure that the sub-distributions are also well replicated in

Algorithm 2 Resampling procedure

1: function RESAMPLE(a,b,num,threshold)
2: a - array of frequency counts per each age category in reference

sample
3: b - array of frequency counts per each age category in projected

sample
4: num - total number of age categories
5: for i = 1 to num do
6: if abs(a[i]− b[i]) > threshold then
7: if (a[i]− b[i]) < 0 then
8: nb of observation = abs(a[i]− b[i])
9: for j = 1 to nb of observation do

10: randomly sample a person of the age i
11: remove a selected person from the projected sample
12: end for
13: else
14: nb of observation = abs(a[i]− b[i])
15: for j = 1 to nb of observation do
16: randomly sample a person of the age i
17: add the selected person to the projected sample
18: end for
19: end if
20: end if
21: end for
22: end function ▷ Return the updated sample

the baseline synthetic dataset. Otherwise, if there are some
illogically generated individuals, e.g., people under 15 who
are retired, we risk duplicating them by resampling which
impacts the quality of the resulting sample. The resampled
dataset created at tc is used as a new baseline to continue
the dynamic projection until the final year tend.

IV. RESULTS

In this section, we implement and verify our hybrid
methodology in a case study of Switzerland’s population,
using MTMC data from 2010, 2015, and 2021. Initially,
the synthetic sample from 2010 is generated and validated
against the real data from 2010. Subsequently, the synthetic
sample from 2010 is projected to 2015 using dynamic projec-
tion. Then, we compare the age marginals of the projected
sample from 2010 to 2015 with the age marginals of the
real MTMC 2015 data. Based on this comparison, we apply
resampling on the projected sample in an attempt to improve
the fit to the real marginals. Finally, the corrected sample is
projected from 2015 to 2021 and validated against the real
data from 2021. In order to analyze the stability of the com-
plete method, we run several simulations for both the gen-
eration and the projection steps and perform bootstrapping
to calculate confidence intervals. The validation is conducted
by comparing the marginals and sub-distributions of different
generated samples against the real data. In addition, SRMSE
scores are reported at three different aggregation levels, i.e.,
the first, second, and third order. The first order indicates
the fit of the marginal distributions, while the second and
third-order statistics provide insights into the replication of
sub-distributions. We either report the SRMSE value for a
particular attribute or a certain combination of them at a
specific aggregation level. Finally, the mean of SRMSE is
computed for all attributes, with a lower score indicating a
better fit.



A. Data description

The MTMC data, usually collected every 5 years, con-
sist of two datasets. One contains information about the
sociodemographic attributes of all individuals in the surveyed
households, e.g., age and gender, while the other contains in-
formation about households, e.g., size, type, number of cars,
as well as additional information about the survey respon-
dent, e.g., employment. Since data are collected following
similar procedures, all datasets are characterized by a similar
set of attributes. In this paper, we focus on the age ([6-
99]), employment (‘employed’, ‘unemployed’, ‘education’,
‘retired’, ‘under 15’), and gender (‘male’, ‘female’) of an
individual in the household.

TABLE II: Data description

Sample size
Original

Sample size
Preprocessing Data loss

MTMC 2010 62,903 62,868 0,06%
MTMC 2015 57,070 57,053 0,03%
MTMC 2021 55,018 54,986 0,06%

Compared to the original dataset, we remove individuals
with missing information about any of the attributes. The
differences between the original and pre-processed data are
shown in Table II. For employment, we aggregate categories:
‘self-employed’, ‘working in a company’, ‘employee’, and
‘apprentice’ into the group ‘employed’, and categories
‘unemployed’, ‘unable to work’, ‘housewife/househusband’,
and ‘non-working adult’ into the group ‘unemployed’. The
rest of the categories remain the same. The MTMC dataset
provides weights to correct sampling biases, which we have
applied in all of our experiments. To validate the generation
step, we discretize age further into different categories:
‘<15’, ‘15-17’, ‘18-23’, ‘24-43’, ‘44-64’,‘≥ 65’. Finally, to
validate the projection step, we discretize the age with a step
of 5 years, to match the time gap between two successive
surveys.

B. Evaluation of the baseline synthetic sample

In Fig. 3, we see that the synthetic marginals of each
attribute fit the marginals of the real sample used as a refer-
ence. Small confidence intervals indicate that the results are
stable over several iterations. Some categories of attributes
are perfectly correlated, e.g., people under 15 always have
employment status ’under 15’, and people above 65 are
always retired. Therefore, we can simplify the process by de-
terministically assigning these categories and excluding them
from the stochastic generation. As illustrated in Table III, the
low scores of SRMSE indicate that the sub-distributions are
also well replicated.

C. Comparison of hybrid simulator and state of the art
methods - dynamic projection and resampling

In this section, we compare existing dynamic projection
(see Section III-B) and resampling (see Section III-C) with
our hybrid simulator (see Section IV) that combines both
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Fig. 3: The comparison of the marginal distributions -
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TABLE III: SRMSE - real and generated sample from 2010

Age Employment Gender
First order 4.45 · 10−2 8.76 · 10−3 4.69 · 10−3

Age, Employment Employment, Gender Age, Gender
Second order 7.28 · 10−2 9.40 · 10−3 5.71 · 10−3

Age, Employment, Gender
Third order 2 · 10−4

of them. In order to compare the dynamic projection and
hybrid approach we analyze two scenarios, where we project
a baseline synthetic sample from 2010 to 2021 using both
methods, and compare the obtained distributions against the
real data from 2021.

On the left-hand side of Fig. 4, we illustrate the results of
dynamic projection, and on the right-hand side, the results of
the dynamic projection with resampling, from 2010 to 2015.
We notice that using only the dynamic projection yields a
worse fit. This comes from the fact that the real samples
from 2010 and 2015 do not follow the same age distribution,
which results in the propagation of the bias as we project.
For example, we observe that the projected sample from 2010
has an over-represented category of children below ten years,
compared to the real sample from 2015. This means that this
category was over-sampled in the baseline sample.
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In Table IV, we compare the first-order SRMSE of differ-
ent projected samples over different periods against the real
data. The sample projected from 2015 to 2021 is closer to the
real data from 2021 than the sample projected from 2010 to
2021. This indicates that using a more recent baseline sample
for projection yields a closer fit to the latest data, considering
that the error increases as we project over a longer period.



Looking at the projection over a longer time horizon, the
hybrid approach gives better results than the dynamic pro-
jection from 2010 to 2021. This is expected as the main idea
of a hybrid approach is to decrease the projection error by
resampling every few years in an attempt to help reduce the
bias and improve the accuracy. The age attribute shows the
most significant differences since it is used for resampling.
However, the correction of age implicitly improves the fit of
other correlated attributes.

On the other hand, the projection from 2015 to 2021, i.e.,
re-generation, gives better results based on the SRMSE than
the hybrid approach. This suggests that for smaller projection
horizons, there might be no need to perform the resampling
step. However, for a larger problem scale, e.g., generating
more attributes, the re-generation could suffer from the
curse of dimensionality, which can hinder the generator’s
efficiency and the accuracy of the results. Additionally, it
is worth noting that some synthetic generators rely on a
complete disaggregation of the real data in order to be able
to mimic it, whereas the resampling procedure requires only
the marginals. This makes the hybrid approach more resilient
with respect to problems related to data availability.

We also test a resampling method from 2010 to 2021,
where we adjust marginals annually to achieve a perfect fit of
age according to real data, starting from modifying a baseline
synthetic sample. While the resampling demonstrates an al-
most perfect fit for age marginals (refer to Table IV), it leads
to a lack of heterogeneity in the generated sample over long
projection horizons, resulting in very similar individuals.
This phenomenon is evident through the third-order SRMSE
score of the resampling (0.33), as compared to the hybrid
approach (0.20), which indicates a lower representativity of
the sub-distributions. Note that this difference might be more
significant when generating a greater number of attributes or
attributes that are less correlated with age.

TABLE IV: First order SRMSE - Comparison of different
projection scenarios against the real sample 2021

Age
·10−2

Employment
·10−2

Gender
·10−2

Average
All attributes

·10−2

Dynamic projection
2015 - 2021

5.76 3.71 0.48 3.31

Hybrid simulator projection
2010 - 2021

7.35 5.26 0.61 4.41

Dynamic projection
2010 - 2021

8.28 7.13 0.67 5.36

Resampling
2010 - 2021

1.69 4.02 1.76 2.49

V. CONCLUSION

In this paper, we present a hybrid framework for gen-
erating and maintaining synthetic samples. To the best of
our knowledge, this is the first attempt to update synthetic
samples by integrating new data without re-generating the
entire sample. We compared our approach with existing
projection methods using a baseline sample of synthetic
individuals. Our results demonstrate that by combining dy-
namic projection and resampling, we can achieve a better fit

between the synthetic data and the most recent real sample
compared to the existing techniques when projecting far into
the future.

In the future work, we aim to investigate the influence
of different factors on the accuracy and the computational
efficiency of the re-generation and the hybrid approaches. To
establish a general framework, it is of paramount importance
to test the scalability of the methods with respect to the num-
ber of generated attributes since the complete re-generation
method could suffer from the curse of dimensionality. Fi-
nally, we aim to test and compare the performance of the
two approaches on smaller and sparser datasets.
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[8] B. F. Yaméogo, P. Gastineau, P. Hankach, and P.-O. Vandanjon, “Com-
paring methods for generating a two-layered synthetic population,”
Transportation Research Record, vol. 2675, no. 1, pp. 136–147, 2021.

[9] M. Rahman Fatmi and M. Ahsanul Habib, “Baseline synthesis and mi-
crosimulation of life-stage transitions within an agent-based integrated
urban model,” Procedia Computer Science, vol. 109, pp. 608–615,
2017.

[10] N. Lomax, A. Smith, L. Archer, A. Ford, and J. Virgo, “An open-
source model for projecting small area demographic and land-use
change,” Geographical Analysis, vol. 54, 02 2022.

[11] B. Farooq, M. Bierlaire, R. Hurtubia, and G. Flötteröd, “Simulation
based population synthesis,” Transportation Research Part B: Method-
ological, vol. 58, 12 2013.

[12] M. Templ, B. Meindl, A. Kowarik, and O. Dupriez, “Simulation of
synthetic complex data: The r package simpop,” Journal of Statistical
Software, vol. 79, no. 10, p. 1–38, 2017.

[13] Y. Zhu and J. Ferreira, “Synthetic Population Generation at Disaggre-
gated Spatial Scales for Land Use and Transportation Microsimula-
tion,” Transportation Research Record: Journal of the Transportation
Research Board, vol. 2429, no. 1, pp. 168–177, Jan. 2014.
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matière de mobilité. Neuchâtel: Bundesamt für Statistik (BFS), May,
Jan, Apr 2012, 2018, 2023.

[15] M. Kukic and M. Bierlaire, “Divide-and-conquer one-step simulator
for the generation of synthetic households,” Transport and Mobility
Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, Technical Report TRANSP-OR 230408, 2023.

[16] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,
Bayesian Data Analysis (3rd ed.). A Chapman and Hall Book,CRC
Press, London, 2013.

[17] S. Garrido, S. S. Borysov, F. C. Pereira, and J. Rich, “Prediction of
rare feature combinations in population synthesis: Application of deep
generative modelling,” 2019.

[18] G. Lederrey, T. Hillel, and M. Bierlaire, “Datgan: Integrating expert
knowledge into deep learning for synthetic tabular data,” 2022.


