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1École Polytechnique Fédérale de Lausanne, Switzerland
2University of Cambridge, UK

Abstract
Mode choice modelling has almost exclusively been tackled using Discrete Choice Models
(DCMs). This is in part due to their highly interpretable linear structure, which allows the
model to be checked for consistency against established behavioural expectations. However, a
key drawback of DCMs is that the utility functions must be specified manually in advance of
fitting the model, a process that does not scale well with increasing data complexity.

Machine Learning (ML) is increasingly being investigated as an alternative to DCM for
modelling mode choice. Whilst ML automates the decision-making process, requiring no utility
functions to be specified, it has a crucial limitation in that the resulting models are difficult to
interpret and to check for behavioural consistency.

In order to address the limitations of both ML and discrete choice models, we propose an
assisted specification procedure, in which the aggregate structure of a fitted Ensemble Learning
(EL) model is used to inform the utility functions in a DCM. The resulting models are found to
have greatly improved performance over manually specified DCMs, outperforming all but the
highest performing ML classifier.

Introduction & background
Solutions used both in industry and academic research for modelling passenger mode choice
rely almost exclusively on Discrete Choice Models (DCMs) based on the random-utility frame-
work. There are many features of DCMs which help explain their ubiquitous usage. Most
importantly, the linear utility functions used in DCMs are easy to interpret and ensure a high
degree of robustness, as the parameter values can be checked for consistency with established
behavioural theory. However, a key drawback of DCMs is that the utility functions must be
specified in advance of fitting the model. This is a high-dimensional problem which has no
exact solution and cannot be tackled using conventional optimisation techniques. The current
approach, manual specification, relies on a combination of expert knowledge and guesswork,
and is expensive in terms of time, and human and computational resources. This effectively
limits the complexity of models used in practice. This limit becomes restrictive when using
complex datasets, particularly when considering interactions of input variables.

The availability of larger and more complex datasets describing passenger movements has
driven an increasing focus on Machine Learning (ML) as an alternative to DCMs for mode
choice prediction. There are several applications of ML algorithms in the choice-modelling
literature, including Artificial Neural Networks (ANNs) (Lee, Derrible, and Pereira 2018); De-
cision Trees (DTs) (Tang, Xiong, and Zhang 2015); Ensemble Learning (EL) (Wang and Ross
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2018); and Support Vector Machines (SVMs) (Zhang and Xie 2008). These algorithms automate
the decision-making process and as such require no manual specification of utility functions, al-
lowing them to work seamlessly with complex datasets. Furthermore, several studies which
investigate ML approaches identify substantially higher Out-Of-Sample (OOS) predictive per-
formance on ML algorithms compared to traditional utility-based DCMs (Wang and Ross 2018;
Hagenauer and Helbich 2017). However, ML models have a crucial limitation: the lack of a ro-
bust behavioural model. This results in ML models being far less interpretable than DCMs and
makes it hard to ensure that the model predictions are consistent with behavioural expectations.

In order to address the current limitations of both the discrete choice and ML models cur-
rently used to predict passenger mode choice, we introduce a method for assisted specification
of DCMs using ML. Our approach involves using the structure of a fitted DT ensemble (i.e.
an EL model) to inform the utility specification of a DCM. EL models combine several weak
learners (DTs) to make predictions, such that each individual DT has low impact on the re-
sult (Dietterich 2000). By investigating the structure of the DTs at an aggregate level, we use
each DT as a weak teacher, providing an understanding of the decision-making process of the
model. This can provide valuable insights into how to structure a DCM, including high-order
variable interactions and non-linear relationships between input variables and mode choice. We
test our approach through a comparative study of DCMs, using both manual and assisted speci-
fication, with a suite of several ML classifiers.

Ensemble learning and stochastic gradient boosting
DT-based EL algorithms have several features which make them well-suited to assisted speci-
fication of DCMs. Firstly, DTs split data using only the rankings (order) of feature values. As
such, DTs are independent of feature scaling, or any monotonic transformation of the features.
As well as making the models more robust to varying input data, this provides the EL algo-
rithms with the flexibility to approximate any monotonic non-linear function of the features.
By analysing the distribution of the split points for each feature, it is possible to identify these
non-linear relationships in the model.

Secondly, the information gain from each split in each DT is calculated during model fitting.
It is therefore possible to calculate the relative importance of each feature in the ensemble by
summing the gain contributed by all splits using that feature.

Finally, due to their hierarchical structure, feature interactions can be easily observed in DTs
by analysing the sequential splits using a set of features. By summing the total gain provided
by sequential splits over those features, the relative importance of arbitrary nth order feature
interactions can be calculated.

In this study we use Gradient Boosting Decision Trees (GBDT) (Friedman 2001; Chen
and Guestrin 2016) as the EL meta-algorithm for the assisted specification. Aside from their
best-in-class predictive performance (see experimental results), GBDT have another distinct
advantage over other EL meta-algorithms (e.g. Random Forest (RF), Extremely randomised
Trees (ET), AdaBoost) for this task; the GBDT algorithm uses sequential regression trees, with
each tree predicting the residual of the previous trees in the ensemble. As such, each tree directly
evaluates the probability distribution over the travel modes. This contrasts with the other EL
meta-algorithms, where each tree attempts to discretely predict the correct mode. As such, the
structure of the trees in the ensemble are likely to have more relevance to the context of a DCM.

Methodology
The assisted specification approach involves the following steps:

1. Optimise the hyper-parameters of a GBDT model on a (training) dataset

2. Train the optimised GBDT model on the same dataset
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3. Investigate the structure of the GBDT model, using it to inform the utility specifications
for a DCM

4. Estimate the assisted specification DCM

5. Simplify the DCM by combining parameters where necessary

Steps 3-5 are applied iteratively, with complexity sequentially added, before estimating and
simplifying the DCM after each step.

To validate the approach, we compare the predictive performance of the assisted specifica-
tion DCM with a manual specification DCM, as well as several ML algorithms, using a dataset
of historic trips. The following sections describe in turn the dataset, the modelling framework,
and how the models are compared.

Dataset
The dataset from Hillel, Elshafie, and Jin (2018) is used for the analysis. It is publicly available
online as supporting material of the paper.

The dataset combines individual historic trip records trajectories alongside their correspond-
ing mode-alternatives from an online directions service, and precise estimates of public transport
fares and Vehicle Operating Costs (VOCs). The dataset considers four modes: walking, cycling,
public transport, and driving. The dataset contains 12 socio-economic/demographic covariates,
many of which are continuous or have several classes, and 13 alternative-specific variables.

The first two years of data are used as the training set. The final year of data is used as a
holdout test set. This represents a realistic transport simulation task of predicting a future year’s
trips.

Modelling framework
DCM with manual specification

The baseline DCM is a Multinomial Logit (MNL) model optimised using a manual search using
PythonBiogeme (Bierlaire 2016).

The complexity of the dataset means there is very high dimensionality when considering
interaction of the variables in the utility specifications. This makes finding optimal variable
interactions infeasible using manual specification. As such, the baseline MNL includes only
first order interaction of input variables with the utilities. Higher order interactions are instead
investigated using the assisted specification.

Even without considering variable interactions, there are still infinite possibilities for how
to include the socio-economic/demographic variables in the utility specifications. Five of these
variables are either continuous or have many (>5) possible discrete values (trip distance, age,
start time, day of week, travel month). To address this, these variables are either binned and in-
cluded as dummy variables, or included directly in the utility functions as a continuous variable
with separate parameters for each mode.

Three bins are used for age, based on the commonly used groupings of child (<18), adult
(18-64), and pensioner (65+). The Transport for London (TfL) fare periods are used to define
four departure time bins: AM peak (06:30-09:29), inter-peak (09:30-16:29), peak (16:30-19:29),
and night (19:30-06:29). The day of the week is grouped into work-days (Monday-Friday),
Saturday, and Sunday. The travel month is grouped into winter (December-February), and all
other months. Finally, trip distance is included in all models as a continuous variable, with a
separate parameter for each mode (fixed to zero for walking). Model performance could be
improved further by using more complex strategies for the binned variables, e.g. piecewise
linear splines, though this is not explored here.
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To conduct the manual search, the full complex initial model is hypothesised, by including
all possible parameters for included variables. The model is then simplified sequentially by
applying restrictions based on Wald tests of the parameters, one parameter at a time. The utility
functions are specified and evaluated using only the training set.

GBDT model

The eXtreme Gradient Boosting (XGB) algorithm (Chen and Guestrin 2016) is used for the
GBDT model. We use Sequential Model-Based Optimisation (SMBO) with the training data
to select the model hyper-parameters for the GBDT algorithm. The optimisation is performed
for 100 iterations of the Tree-structure Parzen Estimator (TPE) algorithm, using the hyperopt
library (Bergstra et al. 2015). 10-fold Cross-Validation (CV) is performed grouped by household
to estimate model performance for each iteration. The search space for each hyper-parameter
is derived from values given by Komer, Bergstra, and Eliasmith (2014). Boosting rounds are
performed until the performance does not increase for 50 consecutive iterations. The optimal
hyper-parameters are deemed to be those one which achieve the lowest average Cross-Entropy
Loss (CEL) over the 10 CV folds.

DCM with assisted specification

An MNL model estimated in PythonBiogeme is used for the assisted specification DCM. Infor-
mation is extracted from the GBDT ensemble using theXgbfir python library (Kostenko 2018).
The library extracts and analyses each DT in the fitted ensemble, identifying the split points and
total gain for each feature. The hierarchical structure of the splits in the tree is also analysed to
identify second, third, and higher order feature interactions, and rank them according to their
importance.

The distribution plots of the split points for the continuous covariate features are analysed
to identify underlying non-linear interactions of input features with mode choice. The relative
importance of second and third order interactions of input features in the GBDT model are used
to identify first and second order interactions of socio-economic/demographic covariates with
alternative-specific variables.

Each modification is applied sequentially to the DCM. The model for each iteration of
assisted specification is simplified sequentially using Wald tests to identify parameters which
should be combined.

Other ML models

For reference, we compare the performance of the two DCMs and the GBDT model with five
further machine learning classification algorithms: ANN, Logistic Regression (LR), ET, RF,
and SVM. We direct the reader to Hastie, Friedman, and Tibshirani (2008) for an overview of
each algorithm. The method used to optimise the models is the same as that used for the GBDT
model.

Model comparison
After being fit on the training data, the OOS predictive performance of all models is evaluated on
the the holdout set. The models are evaluated on their CEL, where a score closer to zero repre-
sents a better fit. For comparison with the results of previous studies, the Discrete Classification
Accuracy (DCA) is also provided, where a score closer to one represents a better fit.

As well as holdout validation, the models are also tested using 100 folds of OOS bootstrap
validation across the full dataset. This allows distributions of the expected performance to be
estimated.
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Results & discussion

Model training/specification
Manual specification MNL

The final model parameters for the baseline MNL with manual specification are shown in table 1.
The model contains 54 parameters, all of which are significant, and have signs and magnitudes
consistent with expected behavioural theory.

GBDT model

The optimised hyper-parameters for the GBDT model are shown in table 2. The ensemble
contains 1472 trees, with a maximum depth of six. This means each tree can model up to
fifth-order feature interactions.

Assisted specification MNL

The most important covariates in the GBDT model are (in order): (i) vehicle ownership, (ii)
distance, (iii) driving license, and (iv) age. Of these, two are categorical: vehicle ownership (no
vehicles, less than one vehicle per adult, one or more vehicles per adult) and driving licence
(yes, no); and two are continuous: distance and age.

The categorical variables are already fully interacted directly with the utilities in the baseline
DCM. However, in the manual specification, distance is simply included linearly as a continuous
variable, and age is included as a binned variable using a-priori bins.

Figure 1 shows the Kernel Density Estimation (KDE) distribution of the binary split values
for the straight-line trip distance. The distribution is heavily skewed towards shorter trips, with
a long tail towards longer trips. This shape is characteristic of a log-normal distribution and
suggests trip choice probabilities are related to log-distance.
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Figure 1: Histogram and KDE plot of split values for straight-line trip distance across all trees
in GBDT classifier.
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Table 1: Estimation report for baseline MNL with manual specification.

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC CYCLING -4.95 0.117 -42.15 0.00
2 ASC DRIVING -4.24 0.0838 -50.53 0.00
3 ASC PT -3.03 0.0793 -38.24 0.00
4 B AGE CHILD DRIVING 0.774 0.0548 14.12 0.00
5 B AGE CHILD PT 0.245 0.0531 4.61 0.00
6 B AGE PENSIONER CYCLING -0.447 0.132 -3.37 0.00
7 B AGE PENSIONER DRIVING 0.541 0.0513 10.54 0.00
8 B AGE PENSIONER PT 0.834 0.0537 15.54 0.00
9 B COST DRIVE -0.118 0.00628 -18.79 0.00

10 B COST PT -0.0925 0.0146 -6.33 0.00
11 B DAY SAT CYCLING -0.338 0.0990 -3.42 0.00
12 B DAY SAT PT 0.204 0.0494 4.13 0.00
13 B DAY WEEK DRIVING -0.163 0.0370 -4.41 0.00
14 B DAY WEEK PT 0.346 0.0470 7.37 0.00
15 B DEPARTURE INTERPEAK CYCLING -0.221 0.0751 -2.95 0.00
16 B DEPARTURE INTERPEAK DRIVING -0.127 0.0340 -3.74 0.00
17 B DEPARTURE PMPEAK CYCLING 0.347 0.0701 4.95 0.00
18 B DEPARTURE PMPEAK DRIVING 0.431 0.0375 11.48 0.00
19 B DEPARTURE PMPEAK PT 0.162 0.0375 4.31 0.00
20 B DISTANCE CYCLING 0.405 0.107 3.80 0.00
21 B DISTANCE DRIVING 0.654 0.0971 6.74 0.00
22 B DISTANCE PT 0.656 0.0974 6.74 0.00
23 B DRIVINGLICENCE CYCLING 0.674 0.0702 9.60 0.00
24 B DRIVINGLICENCE DRIVING 1.06 0.0451 23.57 0.00
25 B DRIVINGLICENCE PT -0.298 0.0407 -7.31 0.00
26 B FEMALE CYCLING -0.810 0.0636 -12.73 0.00
27 B FEMALE DRIVING 0.191 0.0321 5.96 0.00
28 B FEMALE PT 0.217 0.0325 6.67 0.00
29 B PURPOSE B CYCLING 1.09 0.131 8.36 0.00
30 B PURPOSE B DRIVING 0.418 0.0860 4.85 0.00
31 B PURPOSE B PT 0.778 0.0916 8.49 0.00
32 B PURPOSE HBE DRIVING -0.553 0.0493 -11.21 0.00
33 B PURPOSE HBE PT 0.372 0.0541 6.88 0.00
34 B PURPOSE HBO CYCLING 0.400 0.0805 4.97 0.00
35 B PURPOSE HBO PT 0.265 0.0370 7.17 0.00
36 B PURPOSE HBW CYCLING 0.765 0.100 7.63 0.00
37 B PURPOSE HBW DRIVING -0.686 0.0634 -10.81 0.00
38 B PURPOSE HBW PT 0.279 0.0680 4.11 0.00
39 B TIME CYCLING -2.45 0.612 -4.00 0.00
40 B TIME DRIVING -4.32 0.200 -21.56 0.00
41 B TIME ACCESS PT -4.41 0.160 -27.62 0.00
42 B TIME BUS PT -1.92 0.117 -16.50 0.00
43 B TIME INTERCHANGEWAIT PT -5.02 0.317 -15.83 0.00
44 B TIME INTERCHANGEWALK PT -2.89 1.01 -2.85 0.00
45 B TIME RAIL PT -1.51 0.220 -6.88 0.00
46 B TIME WALKING -5.97 0.383 -15.58 0.00
47 B TRAFFICVARIABILITY DRIVING -2.56 0.0846 -30.25 0.00
48 B VEHICLEOWNERSHIP 1 DRIVING 2.17 0.0453 47.93 0.00
49 B VEHICLEOWNERSHIP 1 PT -0.413 0.0380 -10.86 0.00
50 B VEHICLEOWNERSHIP 2 DRIVING 2.57 0.0509 50.57 0.00
51 B VEHICLEOWNERSHIP 2 PT -0.615 0.0485 -12.67 0.00
52 B VEHICLEOWNERSHIP CYCLING -0.138 0.0657 -2.10 0.04
53 B WINTER CYCLING -0.329 0.0817 -4.02 0.00
54 B WINTER DRIVING 0.123 0.0315 3.91 0.00

Summary statistics
Number of observations = 54766
Number of excluded observations = 0
Number of estimated parameters = 54

L(β0) = −75921.797

L(β̂) = −37281.766

−2[L(β0)− L(β̂)] = 77280.062
ρ2 = 0.509
ρ̄2 = 0.508
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Table 2: Optimised hyper-parameter values for GBDT model

Hyper-parameter Range

max depth 6
gamma 5.439× 10−3

min child weight 36
max delta step 4
subsample 0.65
colsample bytree 0.65
colsample bylevel 0.55
reg alpha 4.823× 10−4

reg lambda 2.572
learning rate 0.01
n estimators 1472

The same plot is generated for the natural logarithm of the split points for trip distance,
shown in fig. 2. The distribution is approximately symmetrical, reinforcing the suggestion that
there is a relationship between the log distance and mode choice.
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Figure 2: Distribution of split values for natural logarithm of straight-line trip distance across
all trees in GBDT classifier.

Based on the distributions in figs. 1 and 2, the log-distance is added (alongside the distance)
to the utility specifications for each mode. The resulting simplified model is referred to as the
log-distance model.

Figure 3 shows a bar chart of the number of splits at each age. Unlike the distribution for
the distance splits, there is not a strong skew in the data. Instead, there are three clear modal
peaks, at 11.5, 31.5, and 66.5 years. These modal split values define four new heuristic bins
to define dummy variables: (i) child (<12), (ii) young adult (12-31), (iii) mature adult (32-66),
and (iv) pensioner (67+). These heuristic bins are added to the simplified log-distance model
specification, in place of the a-priori bins. The resulting simplified model referred to as the
heuristic age model.
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Figure 3: Bar chart of number of splits at each age value across all trees in GBDT classifier.

The relative importance of the second and third order interactions in the GBDT are investi-
gated to identify variable interactions.

Of the 10 most important second order feature interactions, six include vehicle ownership
(alongside traffic variability, walking duration, congestion charge, driving duration, straight line
distance, and driving licence ownership). This implies that vehicle ownership should be inter-
acted with the other variables in the utility specifications in the assisted specification DCM.

The vehicle ownership covariate is therefore full interacted with all other parameters in the
heuristic age model, replacing each parameter with three new parameters, with the following
suffixes:

• NVO - no vehicles in household

• VO1 - less than one vehicle per adult

• VO2 - one or more vehicle per adult

Where combined during model simplification, the parameters are denoted NVO1 (no cars or
less than one car per adult) and VO (household with at least one car). The simplified model is
referred to as the vehicle ownership model.

Finally, the most important third order interaction which contains at least two socio-economic
covariates is vehicle ownership/driving licence/traffic variability. Vehicle ownership/driving li-
cence is also the most important second order feature interaction between socio-economic co-
variates. As such, the driving licence variable is fully interacted with the parameters from the
vehicle ownership model, so that each parameter is replaced with two parameters, with the suf-
fixes DL1 and DL0 for having and not having a driving license respectively. The resulting
simplified model is referred to as the full assisted specification model.

Table 3 shows the estimation results for the four sequential assisted specifications, alongside
the baseline manual specification. All the modifications in the assisted specification substan-
tially improve the log-likelihood and Akaike Information Criterion (AIC) during model estima-
tion.

The estimation report for the full assisted specification DCM is given in table 4. The final
model has 100 parameters, all of which are significant. One parameter has an unexpected sign;
B COST FUEL NCO DL1 is positive, suggesting that driving licence holders with no vehicles

8



Table 3: Estimation results for assisted specification MNLs.

Model Params Fit time LL AIC

Manual specification 54 01:40 -37281.77 74671.53
Log-distance 58 02:15 -36513.90 73143.80
Heuristic age 60 04:10 -35976.02 72072.04
Vehicle ownership 87 13:01 -35403.55 70981.10
Full assisted specification 100 42:32 -35082.62 70365.24

in the household have increased utility for driving for increasing fuel costs. As members of
households with no available vehicles, driving trips made by this group must either be made by
taxi or as a passenger in another household’s car. As such, their utility of driving is not directly
affected by fuel cost. It is therefore reasonable to remove this parameter from the model.

Table 4: Estimation report for assisted specification MNL.

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC CYCLING -13.5 0.662 -20.37 0.00
2 ASC DRIVING DL0 -16.9 0.626 -26.92 0.00
3 ASC DRIVING DL1 -14.0 0.515 -27.12 0.00
4 ASC PT VO -23.3 0.581 -40.10 0.00
5 ASC PT NVO -19.4 0.580 -33.42 0.00
6 B AGE CHILD CYCLING NVO DL0 -1.21 0.365 -3.32 0.00
7 B AGE CHILD DRIVING NVO DL0 0.706 0.129 5.48 0.00
8 B AGE CHILD DRIVING VO1 DL0 1.70 0.0947 17.91 0.00
9 B AGE CHILD DRIVING VO2 DL0 2.18 0.0918 23.79 0.00

10 B AGE CHILD PT VO1 DL0 -0.344 0.107 -3.21 0.00
11 B AGE MATUREADULT CYCLING DL1 1.10 0.104 10.53 0.00
12 B AGE MATUREADULT DRIVING NVO DL0 -1.75 0.122 -14.29 0.00
13 B AGE MATUREADULT DRIVING NVO DL1 -0.722 0.210 -3.44 0.00
14 B AGE MATUREADULT DRIVING VO2 DL1 0.520 0.0601 8.65 0.00
15 B AGE MATUREADULT PT NVO -0.918 0.0938 -9.80 0.00
16 B AGE MATUREADULT PT VO1 DL1 -0.374 0.0583 -6.42 0.00
17 B AGE YOUNGADULT CYCLING DL0 0.452 0.107 4.24 0.00
18 B AGE YOUNGADULT CYCLING DL1 -0.363 0.0817 -4.45 0.00
19 B AGE YOUNGADULT DRIVING NVO2 DL1 -0.137 0.0624 -2.19 0.03
20 B AGE YOUNGADULT DRIVING VO1 DL0 -0.287 0.0642 -4.47 0.00
21 B AGE YOUNGADULT DRIVING VO1 DL1 -0.534 0.0509 -10.48 0.00
22 B AGE YOUNGADULT PT NVO DL0 -0.203 0.0599 -3.40 0.00
23 B AGE YOUNGADULT PT NVO DL1 -0.364 0.0781 -4.67 0.00
24 B VOST VONCHARGE VO -0.118 0.00641 -18.35 0.00
25 B VOST FUEL NVO DL1 0.851 0.158 5.39 0.00
26 B VOST FUEL VO2 DL1 -0.268 0.105 -2.56 0.01
27 B VOST PT NVO -0.271 0.0266 -10.20 0.00
28 B DAY SAT CYCLING NVO DL1 -0.816 0.224 -3.65 0.00
29 B DAY SAT PT VO 0.313 0.0655 4.77 0.00
30 B DAY WEEK DRIVING NVO1 DL0 -0.396 0.0519 -7.62 0.00
31 B DAY WEEK DRIVING NVO1 DL1 -0.192 0.0454 -4.21 0.00
32 B DAY WEEK PT VO 0.510 0.0566 9.01 0.00
33 B DEPARTURE INTERPEAK DRIVING VO2 DL0 -0.264 0.0872 -3.03 0.00
34 B DEPARTURE INTERPEAK DRIVING VO2 DL1 -0.124 0.0550 -2.25 0.02
35 B DEPARTURE PMPEAK CYCLING NVO1 0.288 0.0650 4.43 0.00
36 B DEPARTURE PMPEAK DRIVING DL0 0.809 0.0513 15.75 0.00
37 B DEPARTURE PMPEAK DRIVING DL1 0.360 0.0417 8.62 0.00
38 B DEPARTURE PMPEAK PT VO 0.257 0.0460 5.60 0.00
39 B DISTANCE CYCLING VO DL0 -0.896 0.139 -6.44 0.00
40 B DISTANCE CYCLING DL1 -1.47 0.142 -10.33 0.00
41 B DISTANCE CYCLING NVO DL0 -0.819 0.136 -6.03 0.00
42 B DISTANCE DRIVING VO DL0 -0.671 0.139 -4.84 0.00
43 B DISTANCE DRIVING DL1 -1.27 0.141 -9.01 0.00
44 B DISTANCE DRIVING NVO DL0 -0.517 0.137 -3.77 0.00
45 B DISTANCE PT VO DL0 -0.751 0.138 -5.45 0.00
46 B DISTANCE PT DL1 -1.34 0.141 -9.46 0.00

Continued on next page
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Table 4 – continued from previous page

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

47 B DISTANCE PT NVO DL0 -0.658 0.135 -4.88 0.00
48 B FEMALE CYCLING -0.853 0.0593 -14.38 0.00
49 B FEMALE DRIVING DL0 0.458 0.0541 8.46 0.00
50 B FEMALE PT DL0 0.261 0.0466 5.60 0.00
51 B FEMALE PT DL1 0.140 0.0335 4.17 0.00
52 B LOGDISTANCE CYCLING 1.44 0.0995 14.45 0.00
53 B LOGDISTANCE DRIVING VO DL0 2.33 0.0961 24.26 0.00
54 B LOGDISTANCE DRIVING VO DL1 2.21 0.0818 26.99 0.00
55 B LOGDISTANCE DRIVING NVO DL0 2.33 0.0977 23.87 0.00
56 B LOGDISTANCE DRIVING NVO DL1 1.86 0.0863 21.59 0.00
57 B LOGDISTANCE PT VO 3.12 0.0893 34.91 0.00
58 B LOGDISTANCE PT NVO 2.88 0.0909 31.71 0.00
59 B PURPOSE B CYCLING 0.871 0.101 8.65 0.00
60 B PURPOSE B DRIVING VO2 0.729 0.109 6.69 0.00
61 B PURPOSE B PT VO DL0 0.995 0.144 6.89 0.00
62 B PURPOSE B PT VO DL1 0.523 0.0783 6.68 0.00
63 B PURPOSE HBE DRIVING VO DL0 -0.737 0.0696 -10.58 0.00
64 B PURPOSE HBE DRIVING NVO -1.23 0.166 -7.41 0.00
65 B PURPOSE HBE DRIVING VO1 DL1 -0.299 0.0900 -3.32 0.00
66 B PURPOSE HBE PT DL0 0.355 0.0594 5.97 0.00
67 B PURPOSE HBE PT VO2 DL1 -0.492 0.174 -2.83 0.00
68 B PURPOSE HBO CYCLING VO2 0.611 0.0970 6.30 0.00
69 B PURPOSE HBO DRIVING VO DL1 -0.401 0.0419 -9.56 0.00
70 B PURPOSE HBO PT NVO DL0 0.196 0.0578 3.38 0.00
71 B PURPOSE HBW CYCLING NVO1 0.723 0.0728 9.94 0.00
72 B PURPOSE HBW CYCLING VO2 DL1 1.55 0.144 10.72 0.00
73 B PURPOSE HBW DRIVING NVO -1.60 0.145 -11.01 0.00
74 B PURPOSE HBW DRIVING VO1 DL0 -1.32 0.114 -11.53 0.00
75 B PURPOSE HBW DRIVING VO1 DL1 -0.842 0.0612 -13.76 0.00
76 B PURPOSE HBW PT VO2 DL0 1.33 0.322 4.14 0.00
77 B PURPOSE HBW PT VO2 DL1 0.315 0.0858 3.67 0.00
78 B TIME ACCESS PT VO -5.57 0.197 -28.25 0.00
79 B TIME ACCESS PT NVO DL0 -6.56 0.359 -18.26 0.00
80 B TIME ACCESS PT NVO DL1 -6.55 0.449 -14.57 0.00
81 B TIME BUS PT NVO1 DL0 -2.12 0.160 -13.25 0.00
82 B TIME BUS PT NVO1 DL1 -2.94 0.147 -19.97 0.00
83 B TIME BUS PT VO2 DL0 -2.80 0.283 -9.89 0.00
84 B TIME BUS PT VO2 DL1 -4.00 0.203 -19.67 0.00
85 B TIME DRIVING NVO -5.37 0.504 -10.66 0.00
86 B TIME DRIVING VO1 DL0 -3.86 0.431 -8.96 0.00
87 B TIME DRIVING VO1 DL1 -4.10 0.262 -15.63 0.00
88 B TIME DRIVING VO2 DL0 -3.98 0.494 -8.05 0.00
89 B TIME DRIVING VO2 DL1 -2.63 0.353 -7.45 0.00
90 B TIME INTERCHANGEWAIT PT VO -6.36 0.336 -18.92 0.00
91 B TIME INTERCHANGEWAIT PT NVO -4.06 0.618 -6.57 0.00
92 B TIME INTERCHANGEWALK PT VO1 -4.69 1.25 -3.77 0.00
93 B TIME RAIL -1.86 0.209 -8.87 0.00
94 B TIME WALKING DL0 -4.99 0.525 -9.50 0.00
95 B TIME WALKING DL1 -7.14 0.567 -12.60 0.00
96 B TRAFFICVARIABILITY DL0 -1.63 0.151 -10.78 0.00
97 B TRAFFICVARIABILITY NVO1 DL1 -2.36 0.125 -18.94 0.00
98 B TRAFFICVARIABILITY VO2 DL1 -3.24 0.156 -20.75 0.00
99 B WINTER CYCLING VO DL1 -0.417 0.121 -3.44 0.00

100 B WINTER DRIVING VO 0.163 0.0355 4.59 0.00
Summary statistics
Number of observations = 54766
Number of excluded observations = 0
Number of estimated parameters = 100

L(β0) = −75921.797

L(β̂) = −35082.618

−2[L(β0)− L(β̂)] = 81678.357
ρ2 = 0.538
ρ̄2 = 0.537

Comparison with ML models

The holdout validation results for all models are shown in table 5. The GBDT model performs
best, achieving both the lowest CEL and highest DCA. The manual specification DCM is the
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lowest performing model. The assisted specification DCM is the second highest performing
model, outperforming all ML classifiers except the GBDT model. This shows the model perfor-
mance has been substantially improved using assisted specification.

Table 5: Holdout-validation results for optimised ML classifiers.

Score Rank
Model CEL DCA CEL DCA

MNL - Manual 0.7012 0.7297 8 8
MNL - Assisted 0.6702 0.7434 2 2
GBDT 0.6511 0.7484 1 1
LR 0.6931 0.7356 7 5
FFNN 0.6881 0.7347 5 6
RF 0.6769 0.7416 3 3
ET 0.6798 0.7412 4 4
SVM 0.6920 0.7316 6 7

The distributions of the CEL estimated from the 100 iterations of OOS bootstrap valida-
tion for each model are shown in fig. 4. This figure highlights the significant jump in perfor-
mance from the manual specification MNL (MS-MNL), and the assisted specification MNL
(AS-MNL). Using a paired t-test with the bootstrap results, the assisted specification MNL is
shown to significantly outperform all other classifiers except GBDT at the 2.5% significance
level.
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Figure 4: KDE plots and histograms of out-of-sample CEL for 100 iterations of bootstrapping.

Conclusions & future work
In this study, we introduce a new approach for assisted specification of DCMs using the structure
of a fitted EL model. The approach is tested against a DCM using manual specification, as well
as several ML classifiers. The results show that the assisted specification substantially improves

11



model performance compared to manual specification, with the resulting model outperforming
all ML models except GBDT.

Despite significant improvement in predictive performance, the assisted specification DCM
still maintains an interpretable linear behavioural model, with parameter values which are con-
sistent with expected behaviour. This is a substantial advantage over the GBDT model.

Planned future work for this research includes: (i) further testing and case studies for the
assisted specification approach, (ii) investigating advanced DCM structures, including nesting
and piecewise linear splines, and (iii) formalising the approach in an automated process for
automated specification of DCMs.
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