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Abstract

We formulate a dynamic discrete-continuous choice model (DDCCM) of car ownership, usage and

fuel type. The framework embeds a discrete-continuous choice model (DCCM) into a dynamic

programming (DP) framework to account for the forward-looking behavior of households in the

context of car acquisition. More specifically, we model the of transaction type, the choice of fuel

type, the ownership status (private versus company car), the choice of car state (new versus second-

hand) and the annual driving distance for up to two cars in the household fleet. In this paper,

we present the methodological framework and demonstrate the applicability of such a model by

showing a concrete example of application.
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∗ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL), School of Architecture, Civil and

Environmental Engineering (ENAC), Transport and Mobility Laboratory (TRANSP-OR), {aurelie.glerum,

michel.bierlaire}@epfl.ch
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1 Introduction

Numerous governments have in the past implemented policies aiming at reducing green house gas

emissions and favoring the introduction of alternative fuel vehicles in the market. In this context,

quantitative models play an important role in understanding and predicting the changes in demand

in response to policy changes. In this paper we propose such a model. The literature on car related

choice models is vast but there appears to be a consensus that car ownership (number of cars) and

car usage (distance driven with each car) are interrelated in household decisions and should be

modeled simultaneously. Moreover, a car is a highly durable good that can be used over a long

period of time and that is often sold a number of times at the second-hand market. However, due

to various transaction costs households do not generally change their fleet frequently (e.g. on a

yearly basis). As proposed by Schiraldi (2011) this motivates the use of dynamic discrete choice

models (DDCM) (Rust, 1987; Aguirregabiria and Mira, 2010) that explicitly takes into account

the forward-looking behavior of households.

In this paper we specify a dynamic discrete-continuous choice model (DDCCM) that jointly

models car usage and replacement decisions, including choice of fuel type and ownership status

of each car. One of the main issues is how to model the continuous choice variables capturing the

annual driving distances for each car. We address this issue with a constant elasticity of substitu-

tion (CES) utility function. This is an exploratory study where the main contribution lies in the

specification of an operational model for a complex choice problem. We use the case of Sweden

as an illustration but we emphasize that the proposed methodology is general and can be adapted

or extended to different choice settings (e.g. including the choice of other car characteristics than

fuel type). This is ongoing research and in this paper we present some numerical results for an

illustrative example (without estimating the parameters).

A comprehensive review of the vast literature related to car ownership, type and usage choices

is out of the scope of this paper (for reviews we refer the reader to e.g. De Jong et al., 2004;

De Jong and Kitamura, 2009). Even though many sophisticated studies have been published on

static models, we focus here on the fairly scarce literature directly related to our work, which deals

with dynamic models taking into account the forward-looking behavior of decision-makers. One

of the most notable studies is Schiraldi (2011). It focuses on the estimation of transaction costs in a

dynamic framework based on aggregate data and analyzes the effect of a scrappage policy in Italy.

Moreover Schiraldi (2011) models the price on the second-hand market and provides an excellent

review of related literature. In this work we do not attempt to model the second-hand market, we

simply differentiate the transaction of buying a new or a used car. Similarly to Schiraldi (2011)

we assume that a decision-maker maximizes the expected discounted lifetime utility modeled

by a value function that is the solution to the Bellman equation. Moreover we make the same

assumptions (actually dating back to Rust, 1987) to deal with the ‘curse of dimensionality’ and

obtain an operational model. As opposed to Schiraldi (2011) where a consumer holding a car a

given year decides whether to hold, sell or scrap the car (if the consumer does not hold a car he/she

decides to continue that way or to buy one), we have a more complex choice setting because a

household can hold more than one car and we also model the usage of each car.

Related to our work is also the one by Xu (2011) who develops a dynamic discrete choice

model to explain car acquisition decisions and choice of fuel type. Car usage is however not

considered so there are no continuous choice variables. The model is applied to stated preferences

data collected in Maryland and corresponds to a optimal stopping model similar to the one by Rust

(1987). Other modeling approaches have been considered in order to jointly model car ownership

and usage. A very interesting approach is presented by Gillingham (2012) who models cars’

monthly mileage conditional on vehicle type. He integrates consumers’ expectations about the

cars’ future resale prices and future gasoline prices after a six-year period.
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It is important to mention an ongoing research project at University of Copenhagen with an

objective similar to ours, namely a discrete-continuous dynamic choice model for transaction de-

cisions and usage. Their presentation at the IRUC seminar (Copenhagen, December 2012) inspired

us to view the continuous choice variable of car usage as a myopic choice conditional on the dis-

crete choice variables (unpublished work by Anders Munk-Nielsen presented at the IRUC seminar

at University of Copenhagen on 17th December 2012).

There is also literature on duration models that model the time elapsed between two car trans-

actions. For instance, De Jong (1996) presents an interesting study based on a system of models

including a duration model for the time between car replacement decisions and a regression model

for annual car usage. The main difference between the dynamic model presented here and a dura-

tion model are that households are assumed to be forward-looking. This means that they optimize

their choices taking expected future utility into account, and socio-economic characteristics are

not assumed constant between transactions and that we can model several choices jointly.

The paper is structured as follows. Section 2 presents some information on the Swedish

car market that is used as illustration. Section 3 presents the methodological framework of the

DDCCM. Section 4 provides an illustration of the application of the model. Section 6 concludes

the paper by outlining the next steps of this research.

2 The case of Sweden

The definition of important choice variables obviously depends on the application. In this study

we use the case of Sweden mainly due to the fact that we have access to the entire Swedish

population and car registers that allows us to follow cars, individuals and households from 1998

to 2008. Moreover, several different policies have been in place and act on different actors at

different geographical levels (local, regional and national) with the objective of accelerating the

introduction of clean cars in the fleet. Shifts in demand can be observed in response to these

policies. As a first example, a significant increase of small diesel cars has been observed in the

later years (Hugosson and Algers, 2012; Kageson, 2013). As a second example, fluctuations in

the number of cars owned by each household have been observed. More precisely, the fraction of

households without a car has been increasing from 2006 (see Figure 1), which is the year of the

trial period of the Stockholm congestion tax, preceding the actual introduction of this system.
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Figure 1: Evolution of car ownership in Sweden.

The registers are based on individuals. We have extensive socio-economic data such as net

income, home and work locations, type of employment, etc. in addition to characteristics of

each owned car (make, model, fuel type, fuel consumption, age, annual mileage from odometer

readings, etc.). In addition we have information on all household types except for unmarried

individuals living together without children. Part of this data (without car characteristics) was

used by Pyddoke (2009).

A special characteristic of the Swedish car market is the high proportion of company-owned

cars, which is a consequence of the fringe benefit taxation system. These cars are important to

consider because they represent a large share of the new car sales and can be used privately by

the households. However, from the registers we know if an individual pays a benefit tax and

hence has access to a company car but we do not have any information on the car characteristics.

The company owned cars therefore pose a number of challenges to the specification of our model

which we attempt to address below.

3 The dynamic discrete-continuous choice modeling framework

In this section we present the DDCCM framework. We start by stating the main assumptions on

which the model is based. Then we describe the model structure, from the base components to

the specification of the full model. One of the key elements of the choice variable is the annual

mileage of each car and we explain in detail its specification. We end the section by discussing a

possible estimation method of the model.

3.1 Main assumptions

The DDCCM is formulated as a discrete-continuous choice model that is embedded into a dynamic

programming (DP) framework. We model the joint decision of vehicle transactions, mileage, fuel

type, use of a company car (if available) and purchase of a new or second-hand car, based on the

following assumptions.

Decisions are made at a household level. In addition, we assume that each household can

have at most two cars, since a very small share of the Swedish households has more than two

cars. Larger household fleets may also be considered but at the cost of increased complexity. As
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pointed out by De Jong and Kitamura (2009) it may be relevant to consider three car households

for prediction even though the current share in the population is low.

The choice of vehicle transaction, fuel type(s), use of a company car(s) and selection of (a)

new versus second-hand car(s) is strategic, that is, we assume that households take into account

the future utility of the choice of these variables in their decision process.

We consider an infinite-horizon problem to account for the fact that households make long-

term decisions in terms of car transactions, choice of car ownership status, fuel type and car state

(new versus second-hand). For example, individuals are assumed to strategically choose the fuel

type of the car they purchase according to their expectation of fuel prices in the next years, or they

decide to purchase one only car at present but already know that they might add another car in the

future years.

We make the simplifying assumption that when households decide how much they will drive

their car for the upcoming year, they only consider the utility of this choice for that particular year,

but that they do not account for whether the residual value of their car is affected by usage. In

other words, the choice of mileage(s) is myopic, that is, households do not take into account the

future utility of the choice of the current annual driving distance(s) in their decision process.

Similarly to De Jong (1996) we make the reasonable assumption that the choice of mileage(s)

is conditional on the choice of the discrete decision variables (i.e. the transaction type, the type of

ownership, the fuel type and the car state).

3.2 Definition of model components

The DP framework is based on four fundamental elements: the state space, the action space,

the transition function and the instantaneous utility. In this section, we describe each of these in

detail1.

The state space S is constructed based on the following variables:

• The age yc,t of car c at year t. We set an upper bound for the age Ȳ , assuming that above this

upped bound, changes in age do not affect the utility or transition from one state to another.

This implies that we have yc,t ∈Y = {0,1, . . . ,Ȳ}.

• The car ownership status Ic,t . It consists of a discrete variable indicating whether car c is

owned privately (level 1), by sole proprietorship2 (level 2) or by another type of company

(level 3) at year t. We have Ic,t ∈ IC = {0,1,2,3}, where level 0 indicates the absence of car

c.

• The fuel type fc,t of car c at year t. A car c can have one of the three following fuel types

fc,t : petrol, diesel or other fuel types (flexi fuel ethanol, CNG, hybrid, plug-in hybrid and

electric car), denoted by 1, 2 and 3, respectively. Therefore we have fc,t ∈ F = {0,1,2,3},

where level 0 indicates the absence of a car.

Each state st ∈ S can hence be represented as

st = (y1,t , I1,t , f1,t ,y2,t , I2,t , f2,t). (1)

Due to the fact that we only have information about the age of the car and its fuel type for

privately-owned cars and cars owned by sole proprietorship, we do not represent age and fuel type

1All the variables defined in Sections 3.2, 3.3 and 3.4 are household-specific. However, to simplify the notation, we

omit the household-specific index n.
2By sole proprietorship, we mean a form of business that legally has no separate existence from its owner (Source:

http://www.entrepreneur.com).
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for company cars. Therefore, if we have Ic,t = 3, then this implies that we also have yc,t = 0 and

fc,t = 0, respectively.

For households who have access to company cars, the size of the state space can be computed

as

|S| = (|Y |× (|IC|−2)× (|F|−1)+1)2 (2)

+ (|Y |× (|IC|−2)× (|F|−1)+1) (3)

+ 1. (4)

The first term (2) consists of the number of possible states for two-car households. The element

|Y |×(|IC|−2)×(|F|−1) of (2) is the number of states for housholds with privately owned cars or

cars owned by sole proprietorship, while the element 1 of (2) is the number of states for households

with company cars. For these households, we indeed only have the information of whether a

company car is chosen or not. The exponent 2 stands for the two cars in the household. The

second term (3) is the number of possible states for one-car housholds and the last term (4) stands

for the absence of cars in a household. Assuming that cars can be at maximum 10 years old and

given the above definitions of IC and F , the size of the state space reaches the reasonable size of

3′783. It is important to keep the size as low as possible since we need to solve the DP problem

repeatedly when estimating the model parameters.

We note that not all households have access to company cars and some states of S are then

unavailable.

The action space A is constructed based on the following variables:

• The transaction ht in the household composition of the car fleet at year t. Every year,

the household can choose to increase, decrease or replace all or part of the fleet, or do

nothing. We additionally make the simplifying assumption that a household cannot purchase

more than one car per time period. The enumeration (see Figure 2) leads to nine possible

transactions. Therefore we have ht ∈ H = {1, . . . ,9}.

• The annual mileage m̃c,t ∈ R
+ for each car c.

• The choice Ĩc,t ∈ IC of car ownership status.

• The fuel type f̃c,t ∈ F .

• The car state r̃c,t , i.e. the decision to purchase a new or second-hand car. We hence have

r̃c,t ∈ R = {0,1,2}, where level 0 means that no car has been bought, level 1 means that car

c is bought new and level 2 means that car c is bought second-hand.

Note that if Ic,t = 1,2, then we model the choice of mileage m̃c,t , fuel type f̃c,t and car state r̃c,t

for a car c for the next year. However, for Ic,t = 3, no information on the choice of mileage, fuel

type or state of the car (new or second-hand) for the next year is available from the data. Therefore

we do not model such decisions.

Each action at ∈ A can be represented as

at = (ht ,m̃1,t , Ĩ1,t , f̃1,t , r̃1,t ,m̃2,t , Ĩ2,t , f̃2,t , r̃2,t). (5)

It is worth noting that we have a completely discrete state space, while the action space is

discrete-continuous. From some particular states st , not all actions are available. Hence, we

implicitly have at ∈A(st) and the total number of discrete actions must be obtained by enumerating

all possible actions from each particular state. Table 1 summarizes the number of discrete actions

that can be attained for households with 0, 1 or 2 cars, depending on the type of transaction which
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Figure 2: The nine possible transactions in a household fleet

is chosen. For example, a 1-car household that decides to increase the fleet of 1 car has the choice

between 3 types of car ownership status, 3 types of fuel and 2 types of car state, leading to 18

possible actions. In the row ‘Sum’, the total number of possible discrete actions for households

with respectively 0, 1 or 2 cars are reported.

Given that a household is in a state st and has chosen an action at , the transition function

f (st+1|st ,at) is defined as the rule mapping st and at to the next state st+1. In our case, st+1 can be

inferred deterministically from st and at . Function f (st+1|st ,at) is hence defined as follows:

f (st+1|st ,at) =







1 if st and at lead to state st+1

0 otherwise
(6)

Assuming that aD
t = (ht , ˜I1,t , ˜f1,t , ˜r1,t , ˜I2,t , ˜f2,t , ˜r2,t) gathers the discrete components of an action

at and aC
t = (m̃1,t ,m̃2,t) gathers the continuous components, the instantaneous utility is defined as:

u(st ,a
C
t ,a

D
t ,xt ,θ) = v(st ,a

C
t ,a

D
t ,xt ,εC(a

C
t ),θ)+ εD(a

D
t ), (7)

where variable xt contains socio-economic information relative to the household, θ is a vector of

parameters to be estimated. Expression v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) is a deterministic term, εD(a

D
t )

is a random error term for the discrete actions and εC(a
C
t ) captures the randomness inherent to

the continuous decision(s). Similarly as proposed by Rust (1987), the instantaneous utility has an

additive-separable form.
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Transaction name 0 car 1 car 2 cars

h1: leave unchanged 1 1 1

h2: increase 1 18 18 -

h3: dispose 2 - - 1

h4: dispose 1st - 1 1

h5: dispose 2nd - - 1

h6: dispose 1st and change 2nd - - 18

h7: dispose 2nd and change 1st - - 18

h8: change 1st - 18 18

h9: change 2nd - - 18

Sum 19 38 76

Table 1: Number of possible actions for households with 0, 1 or 2 cars (in the action space generated by the

discrete components of the choice variable).

3.3 Value functions

As in a DDCM case (see e.g. Aguirregabiria and Mira, 2010; Cirillo and Xu, 2011), the value
function of the DDCCM is defined as:

V (st ,xt ,θ ) = max
at∈A

{u(st ,at ,xt ,θ )+β ∑
st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at )} (8)

= max
at∈A

{v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ )+ εD(a

D
t )+β ∑

st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)} (9)

In order to obtain a version of the Bellman equation that does not depend on the random utility

error term εD(a
D
t ), we consider the integrated value function V̄ (st ,xt ,θ), given as follows:

V̄ (st ,xt ,θ) =

∫

V (st ,xt ,θ)dGεD
(εD(a

D
t )) (10)

where GεD
is the CDF of εD.

In the case where all actions are discrete and the random terms εD(a
D
t ) are i.i.d. extreme

value, it corresponds to the logsum (see e.g. Aguirregabiria and Mira, 2010). We aim at finding a

closed-form formula in the case where the choices are both discrete and continuous too. In fact, a

closed-form formula is possible in the special case where the choice of mileage of each car in the

household is assumed myopic. This implies that individuals choose how much they wish to drive

their car(s) every year, without accounting for the expected discounted utility of this choice for the

following years3.
Under the hypothesis of myopicity of the choice of annual driving distance(s), the integrated

3This assumption was also made in the unpublished work by Anders Munk-Nielsen, University of Copenhagen. We

make this reasonable hypothesis here too.
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value function is obtained as follows:

V̄ (st ,xt ,θ ) =
∫

V (st ,xt ,θ )dGε(εD(a
D
t ))

=
∫

max
at∈A

{u(st ,at ,xt ,θ ,ε(at))+β ∑
st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)}dGε (εD(a
D
t ))

=
∫

max
aD

t

{max
aC

t

{v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ )}+ εD(a

D
t )+β ∑

st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)}dGε (εD(a
D
t ))

= log∑
aD

t

exp{max
aC

t

{v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ )}+β ∑

st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)} (11)

Similarly as in the case of a DDCM, the value function is obtained by iterating on Equa-
tion (11). In our case, Equation (11) can be simplified as follows due the deterministic formulation
of the transition.

V̄ (st ,xt ,θ ) = log∑
aD

t

exp{max
aC

t

{v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ )}+βV̄ (s′t+1,xt+1,θ )}, (12)

where s′t+1 is the state deterministically reached from st if action at is chosen.

However we emphasize on the fact that Equation (11) is also applicable to case where the

transition is stochastic.

3.4 Constant Elasticity of Substitution (CES) utility function

We assume that expression v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) of Equation (11) is the sum of the utility of

the discrete actions vD
t and the utility of the continuous actions vC

t :

v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) = vD

t (st ,a
D
t ,xt ,θ)+ vC

t (st ,a
D
t ,a

C
t ,xt ,εC(a

C
t ),θ) (13)

By assumption, each household can have at maximum two cars. This implies that for two-car

households, the annual mileage of each car must be decided every year. Expression

v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) of Equation (11) must hence be maximized with respect to the two an-

nual driving distances. Given the additive form of Equation (13), we only need to maximize

expression vC
t (st ,a

D
t ,a

C
t ,xt ,εC(a

C
t ),θ) with respect to aC

t .

However, if a household owns two cars, we observe from the data that one car is generally

driven more than the other one, i.e. one is used for long distances while the other is used for

shorter trips. We therefore make the assumption that the choice a household actually makes is not

the independent choices of how much each car will be driven, but rather the repartition of the total

mileage that it plans to drive across the two cars.

This motivates the use of a constant elasticity of substitution (CES) utility function for the

choice of mileage(s), since it allows to evaluate the rate of substitution of mileages m1,t and m2,t :

vC
t (st ,a

D
t ,a

C
t ,xt ,εC(a

C
t ),θ) = (m

−ρ
1,t +α ·m

−ρ
2,t )

−1/ρ (14)

Parameter ρ is the elasticity of substitution of vC
t . Expression α represents the weight of the

mileage of one car relative to the other. It is a function of socio-economic characteristics about the

household xt and a random term εC(a
C
t ):

α := exp{γxt − εC(a
C
t )}. (15)

Here, γ is a vector of parameters to estimate. To simplify the problem, we will assume in a first

stage that α is only a constant to estimate. This implies that we assume no error term εC(a
C
t ). We

will later relax this assumption and assume that α has the form of Equation (15).

The choice of m1,t and m2,t must be made such that the budget constraint of the household

9



holds:

p1,t m1,t + p2,tm2,t = Inct , (16)

where pc,t := consc,t ·plc,t is the cost per km of driving car c∈ {1,2} in SEK/km, that is the product

of the car consumption consc,t and the price of a liter of fuel plc,t for that car. Variable Inct is the

share of the household’s annual income which is used for expenses related to car fueling.

The above formulation of the CES utility fonction with the budget constraint has the following

advantages. First, the constraint enables us to solve the maximization problem according to one

dimension only. Such an approach has been considered by Zabalza (1983), in a context of trade-

off between leisure and income. Second, the use of a CES function is also convenient, since the

elasticity of substitution is directly obtained from the estimate of parameter ρ . We however note

that we use the fairly restrictive assumption that all households allocate the same percentage of

their incomes to fuel expenses, since we do not observe these particular expenses from the data.

The optimal value of mileage m1,t is obtained by solving the following maximization problem:

max
m1,t ,m2,t

vC
t , such that p1,tm1,t + p2,tm2,t = Inct (17)

Assuming that we know what share of the household’s income is spent on fuel4, we can obtain

an analytical solution for m2,t :

m∗
2,t =

Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))

. (18)

We can then infer the value of the optimal mileage for the other car:

m∗
1,t =

Inct

p1,t
−

p2,t

p1,t
m∗

2,t (19)

=
Inct

p1,t
−

p2,t

p1,t
·

Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))

(20)

Consequently, we obtain the optimal value for the deterministic utility of the continuous ac-
tions:

vC∗
t =









Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))





−ρ

+α ·





Inct

p1,t
−

p2,t

p1,t
·

Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))





−ρ



−1/ρ

(21)

Then vC∗
t can be inserted back in Equation (13). The Bellman equation (11) becomes:

V̄ (st ,xt ,θ ) = log∑
aD

t

{

exp{vD
t (st ,a

D
t ,xt ,θ )+vC∗

t (st ,a
D
t ,a

C∗
t ,xt ,θ )}+βV̄ (s′t+1,xt+1,θ )

}

, (22)

where aC∗
t = (m∗

1,t ,m
∗
2,t).

The integrated value function V̄ can then be computed by value iteration.

4For example, from 2006 to 2009, households in Sweden spent between 7.3 and 8.1 percent of their income on the

operation of motor-cars (Source: Statistics Sweden).
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3.5 Maximum likelihood estimation

The parameters of the DDCCM are obtained by maximizing the following likelihood function

L (θ) =
N

∏
n=1

Tn

∏
t=1

P(aD
n,t |sn,t ,xn,t ,θ), (23)

where N is the total population size, Tn is the number of years household n is observed and

P(aD
n,t |sn,t ,xn,t ,θ) is the probability that household n chooses a particular discrete action aD

n,t at

time t. This probability is obtained as follows:

P(aD
n,t |sn,t ,xn,t ,θ ) =

vD
n,t(sn,t ,a

D
n,t ,xn,t ,θ )+ vC∗

n,t (sn,t ,a
D
n,t ,a

C∗
n,t ,xn,t ,θ )+βV̄ (s′n,t+1,xn,t+1,θ )

∑ ˜aD
n,t

{

vD
n,t(sn,t ,

˜aD
n,t ,xn,t ,θ )+ vC∗

n,t (sn,t ,
˜aD
n,t ,

˜aC∗
n,t ,xn,t ,θ )+βV̄ (s′n,t+1,xn,t+1,θ )

} (24)

The simplest way to estimate this type of model is using the nested fixed point algorithm

proposed by Rust (1987) where the DP problem is solved for each iteration of the non-linear

optimization algorithm searching of the parameter space. Our DP problem is quite simple because

of the transition function being deterministic and we will adopt this approach in a first stage.

4 Illustrative example

As described in the previous sections, the discrete-continuous choice model is embedded into a

dynamic programming framework in order to account for the expected discounted utility of each

action. In this section, we present an illustration of the results of the value iteration algorithm, for

imposed parameter values.

4.1 Example of specification

As an example, we consider a simple specification of the deterministic (instantaneous) utility

relative to the choice of the discrete variables:

vD
t (st ,a

D
t ,xt ,θ) = C(st)+ τ(aD

t )+βAge(a
D
t ,st) ·max(Age1t ,Age2t), (25)

where Age1t is the age of the first of the two cars and Age2t is the age of the second car. Expres-

sions C(st), τ(aD
t ) and βAge(a

D
t ,st) are parameters that would typically be estimated on data. We

follow the approach proposed by Schiraldi (2011) and specify a constant C(st) relative to house-

holds owning at least one car and a transaction cost τ(aD
t ). The constant is included in order to

capture differences of preferences between households owning at least one car and households

without a car. The transaction cost is meant to capture the unobserved costs (e.g. search cost) of

actions involving the acquisition of a new car, i.e. actions with transactions h2 (increase of 1), h6

(dispose of 1st and change 2nd), h7 (dispose of 2nd and change 1st), h8 (change 1st) or h9 (change

2nd).

In order to illustrate the application of the DDCCM, we choose values for the parameters

of Equation (25). The signs and values are chosen in order to match a priori expectations. For

example, in a one-car household, the older the car is, the more likely the household is to dispose

of it. Hence, we give a positive sign to parameter βAge. Assuming that owning at least one car has

a positive impact on choice, we set C to 5 if the household owns at least a car and to 0 otherwise.

The other chosen parameter values are reported in Table 2. Parameter βAge depends on the size of

the household, on whether the first or the second car is the oldest and on the transaction type. The

transaction cost τ varies according to the different transactions types.
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βAge τ

Transaction name Case 0 car 1 car 2 cars all households

h1: leave unchanged 0 -1 -1 0

h2: increase 1 0 0 - -3

h3: dispose 2 - - 1 0

h4: dispose 1st
1st car is oldest - 1.5 1.5 0

2nd car is oldest - - 0 0

h5: dispose 2nd
1st car is oldest - - 0 0

2nd car is oldest - - 1.5 0

h6: dispose 1st and change 2nd - - 0 -4

h7: dispose 2nd and change 1st - - 0 -4

h8: change 1st
1st car is oldest - 1.5 1.5 -4

2nd car is oldest - - 0 -4

h9: change 2nd
1st car is oldest - - 0 -4

2nd car is oldest - - 1.5 -4

Table 2: Parameters for the deterministic (instantaneous) utility relative to the discrete actions

Likewise, we choose values for the parameters of the deterministic (instantaneous) utility re-

lative to annual mileage. As described in Section 3.4, we assume that α is a constant and fix its

value to 0.3. The elasticity of substitution ρ is set to 0.5. Moreover we fix the discount factor in

the Bellman equation (22) to 0.7.

4.2 Results from the value iteration

Using the parameters of Section 4.1, we iterate on the Bellman equation (22) to obtain the value

function for an example observation. The latter consists of a household with an annual income of

530′000 SEK that spends about 8% of its income on fuel (following the hypothesis described in

Section 3.4).

The program is implemented in C++ and the running time to obtain the value function is about

2 minutes on a 20-core computer.

Figure 3 shows boxplots of the value function for ages of car ranging from 0 to 35. As expected

we observe that the value function decreases as the maximum of the ages of the two cars increases.

This shows that the older the car is, the smaller its expected discounted utility becomes.

5We note that in this evaluation of the value function, we restricted the maximum of the age of the two cars to 3 years

for a better visualization of the difference of the results, but the upper bound for age can be increased.
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Figure 3: Value function

Probabilities of choosing a particular action can be computed using Equation (24). As an

example, we evaluate these probabilities for the above mentioned household, assuming that it has

one private diesel car. We analyze the probabilities of leaving the household car fleet unchanged,

adding one car, disposing of the only car and changing the only car, as a function of the age

of the car (Figure 4). For comparison purposes, we do not only report the probabilities for the

above specified model (Figure 4(d)), but also for a model with the same specification but without

transaction cost (Figure 4(b)), and for static models with (Figure 4(c)) and without (Figure 4(a))

transaction cost. By static models, we denote models based on the assumption that households do

not account for the future utility of the choices of transaction, ownership status, fuel type and car

state.
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(c) Static – with transaction cost
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(d) Dynamic – with transaction cost

Figure 4: Choice probabilities for different transactions, as a function of the age of the car.

Figure 4 allows to analyze variations of particular probabilities as a function of the age of the

car, e.g. the probability of replacing the only car in the household (denoted as changing 1st). As

expected (from the imposed sign on the parameter) we note that the probability of changing the

only car in the household increases as the age of the car increases.

Although we emphasize the fact that no behavioral interpretation can be made on the model at

this point since all parameters have chosen values, we want to highlight that considering a dynamic

model can result in different choice probabilities than in the static case and it is a key aspect to

investigate. Moreover the introduction of a transaction cost also affects the trade-offs between the

transactions.

5 Discussion of extensions

In this section, we discuss the limitations of the approach presented in this paper.

First of all, we have integrated the choice of fuel type in the action space, while we did not

integrate the consumption(s) of the chosen car(s). In terms of specification, this implies that the

consumption for the chosen car is assumed to be constant, independently of the car type which is
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chosen. This is a rather restrictive assumption, which could be relaxed in future research. Anders

Munk-Nielsen takes another approach which has the advantage of including fuel efficiently in the

state space. This yields a more complex model but is a less restrictive assumption than ours.

In the model we presented in this paper, it is assumed that all individuals have access to

company cars. In a later stage, this assumption should be relaxed, and more research should be

performed in order to identify the individuals who can really decide whether to select a company

car or not.

It is computationally demanding to estimate the model using the nested fixed point algorithm.

In a later stage we will adopt the approach by Aguirregabiria and Mira (2002) which reduces the

number of times the DP problem needs to be solved.

6 Conclusion

This paper presents a methodology designed to jointly model car ownership, usage and choice of

fuel type together with an example of application. One of the main properties of the model is that

it accounts for the forward-looking behavior of individuals. This is crucial in the case of demand

for durable goods such as car, since the purchase of a car affects the utility of an individual for the

present and future years of ownership (Schiraldi, 2011).

In order to obtain a realistic model, we account for households’ decisions rather than individual

ones. We specify a CES utility function to capture substitution patterns that occur when two-car

households decide on the annual mileages of the two cars. We also consider a comprehensive

choice variable, that accounts for decisions that are usually jointly made, such as car ownership,

choice of fuel type and annual mileage.

The next steps in this research are (1) to validate the DDCCM by estimating it on synthetic

data generated from distributions of attributes of observations in the Swedish register of cars and

individuals and (2) to estimate it on the full register data. In a later stage, we will assess the impact

of policies implemented during the years of the data on the dynamics of the Swedish fleet and

perform a forecasting analysis of several policy scenarios that have already been defined in the

planning process of the Swedish government for the upcoming years.
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