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Abstract

In this research we specify a dynamic discrete-continuous choice model (DDCCM) of car own-

ership and usage. This model embeds a discrete-continuous choice model into a dynamic pro-

gramming (DP) framework. The DDCCM allows to jointly model the transaction type, the annual

driving distance, the fuel type, the car ownership status and the car state (i.e. the purchase of a new

or second-hand car) relative to each car in a household’s fleet. Moreover we model these decisions

at the household level and for up to two cars per household. In this paper, the methodology is

illustrated by an example of application where parameters are postulated.
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1 Introduction

The purchase of a car within a household and its usage result from a complex decision process. In

addition to their own socio-economic features, households’ decisions are affected by various other

factors, from the vehicle market supply to governmental regulations. Moreover car ownership

decisions change over years due to variations in these factors. Identifying them is therefore highly

important in terms of policy making since its allows to understand of the dynamics of fuel type

shares and consumption.

Cars are durable goods. Indeed individuals keep their vehicles for several years and their ex-

pectations about the future affect their current decisions. Though many models for car ownership

or usage have been developed in the transportation literature, most of them are static models and

do not account for the forward-looking behavior of agents. However as highlighted by Cirillo and

Xu (2011), it is essential to account for this aspect in the context of car acquisition. Recently,

a few studies have started integrating that aspect. Among them, Xu (2011) develops a dynamic

discrete choice model (DDCM) to explain car acquisition decisions and choice of fuel type and

apply it to stated preferences data collected in Maryland. Schiraldi (2011) calibrates a DDCM on

car register data in Italy to analyze the influence of scrappage policies. Aggregate socio-economic

information is introduced into the model to capture heterogeneity of preferences. Other modeling

approaches have been considered in order to jointly model car ownership and usage. For instance,

Gillingham (2012) models cars’ monthly mileage conditional on vehicle type. Other researches

focus on applying a dynamic programming mixed logit (DPMXL) approach (Schjerning, 2008) to

model vehicle type choice, usage and replacement decisions (according to discussions and unpub-

lished work by Anders Munk-Nielsen1). The particularity of their model is that it can handle both

discrete and continuous decision variables.

In this research, we specify a dynamic discrete-continuous choice model (DDCCM) that jointly

models car usage and replacement decisions, including choice of ownership status and fuel type.

Such a model embeds a discrete-continuous choice model into a dynamic programming frame-

work. We propose the following novel features. First, we model choices at a household level

and account for the fact that each household can have at most two cars. In terms of car usage

it cannot be assumed that in two-car households, individuals choose the annual driving distances

of the two cars independently. Therefore, in order to account for this dependency, we consider a

constant elasticity of substitution (CES) utility for the choice of annual driving distances. Second,

we model an extensive choice variable, consisting of the joint choice of the transaction type (e.g.

adding, replacing a car, etc.), the annual distance that each car will be driven, the fuel type of each

car, the decision to choose a company car and to select a new or second-hand car.

At our disposal we have the Swedish car and population registers, where detailed vehicle

and socio-economic information is available at a disaggregate level for the years 1998 to 2008.

This type of data is ideal for the proposed modeling approach since we can follow individuals,

households and cars over time. It moreover allows to analyze and predict the dynamics of car

holdings and usage for the whole population over several years.

This paper is an extension of the research presented at the Swiss Transport Research Confer-

ence (Glerum et al., 2013), where the methodological framework of this DDCCM was already

introduced. The novel part of this paper consists of providing an illustration of the application of

the DDCCM, resulting from the implementation of a major component of the model, i.e. the value

iteration algorithm.

The paper is structured as follows. Section 2 presents the motivations for the current research

and provides a description of the available data. Section 3 presents the methodological framework

of the DDCCM. Section 4 provides an illustration of the application of the model. Section 5
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concludes the paper by outlining the next steps of this research.

2 Background and data

The purpose of this research is to develop a model of car ownership and usage in Sweden, where

there is a mix of policies in place that act on different actors on the local, regional, and national

level.

During recent years, there has been an increasing focus on energy efficiency of new cars and

also on more energy efficient transport modes. Current transport policy in Sweden highlights

public transport and bicycling, and the attractiveness of these modes affect the car ownership as

such. For the purpose of this paper, we emphasize a few stylized facts about the Swedish car

fleet and associated policies. First, in Sweden there is a strong tradition of buying large, powerful

and heavy cars. The car fleet is one of the heaviest in Europe. In order to fulfil climate goals,

a number of policies have been put in place over the last few years aiming at accelerating the

introduction of clean cars in the fleet. Meanwhile, the definition of clean car has also evolved

from being alternative fuel cars only, to any car that meet a specific standard specified in terms of

CO2 emissions and fuel consumption (from year 2005).

The new car sales show a strong demand shift in response to these policies. In recent years

there has also been a significant increase of small diesel cars (Hugosson and Algers, 2012; Kageson,

2012). An important characteristic of the Swedish market for new cars is the high proportion of

company owned cars, which is a consequence of the fringe benefit taxation system. This poses a

number of challenges to our model which will be addressed below.

One of the reasons for few dynamic modeling studies on car related choices may be that data

is difficult to obtain. In this study we use the register data over the whole Swedish population that

combines the population and car registers for the years 1998 to 2008. These registers are based

on individuals and we have extensive socio-economic data such as net income, home and work

locations, type of employment in addition to characteristics of each owned car (make, model, fuel

type, fuel consumption, age, etc.) and the annual mileage from odometer readings. In addition we

have information on all households types except for unmarried individuals living together without

children. Part of this data (without car characteristics) was used by Pyddoke (2009).

We observe a variability in the data with corresponding demand shifts which will be important

for the identification of parameters related to policy variables (such as registration taxes or fuel

prices) inducing the shifts. Moreover, since geographic information is available at a detailed level,

this allows to analyze the impact of policy changes at a regional level.

3 The dynamic discrete-continuous choice modeling framework

In this chapter, we present the framework of the DDCCM. We start by stating the main assumptions

on which the model is based. Then we describe the model structure, from the base components to

the specification of the full model. One of the key elements of the choice variable is the annual

mileage of each car and we explain in detail its specification. We end the section by discussing a

possible estimation method of the model.

3.1 Main assumptions

The DDCCM is formulated as a discrete-continuous choice model that is embedded into a dynamic

programming (DP) framework. We model the joint decision of vehicle transactions, mileage, fuel

type, use of a company car (if available) and purchase of a new or second-hand car, based on the

following assumptions.
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• Decisions are made at a household level. In addition, we assume that each household can

have at most two cars, since a very small share of the Swedish households has more than

two cars.

• The choice of vehicle transaction, fuel type(s), use of a company car(s) and selection of

(a) new versus second-hand car(s) is strategic, that is, we assume that households take into

account the future utility of the choice of these variables in their decision process.

• We consider an infinite-horizon problem to account for the fact that households make long-

term decisions in terms of car transactions, choice of car ownership status, fuel type and

car state (new versus second-hand). For example, individuals are assumed to strategically

choose the fuel type of the car they purchase according to their expectation of fuel prices in

the next years, or they decide to purchase one only car at present but already know that they

might add another car in the future years.

• The choice of mileage(s) is conditional on the choice of the discrete decision variables (i.e.

the transaction type, the type of ownership, the fuel type and the car state).

• The choice of mileage(s) is myopic, that is, households do not take into account the future

utility of the choice of the current annual driving distance(s) in their decision process. We

make the simplifying assumption that when households decide how much they will drive

their car for the upcoming year, they only consider the utility of this choice for that particular

year, but that they do not account for whether the residual value of their car is affected by

usage.

3.2 Definition of the components

The DP framework is based on four fundamental elements: the state space, the action space, the

transition function and the instantaneous utility. In this section, we describe each of these in detail.

The state space S is constructed based on the following variables:

• The age yc,t of car c at year t. We set an upper bound for the age Ȳ , assuming that above this

upped bound, changes in age do not affect the utility or transition from one state to another.

This implies that we have yc,t ∈Y = {0,1, . . . ,Ȳ}.

• The car ownership status Ic,t . It consists of a discrete variable indicating whether car c is

owned privately (level 1), by sole proprietorship2 (level 2) or by another type of company

(level 3) at year t. We have Ic,t ∈ IC = {0,1,2,3}, where level 0 indicates the absence of car

c.

• The fuel type fc,t of car c at year t. A car c can have one of the three following fuel types

fc,t : petrol, diesel or other fuel types (Flexi fuel ethanol, CNG, hybrid, plug-in hybrid and

electric car) , denoted by 1, 2 and 3, respectively. Therefore we have fc,t ∈ F = {0,1,2,3},

where level 0 indicates the absence of a car.

Each state st ∈ S can hence be represented as

st = (y1,t , I1,t , f1,t ,y2,t , I2,t , f2,t). (1)

Due to the fact that we only have information about the age of the car and its fuel type for

privately-owned cars and cars owned by sole proprietorship, we do not represent age and fuel type

2By sole proprietorship, we mean a form of business that legally has no separate existence from its owner (Source:

http://www.entrepreneur.com).
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for company cars. Therefore, if we have Ic,t = 3, then this implies that we also have yc,t = 0 and

fc,t = 0, respectively.

For households who have access to company cars, the size of the state space can be computed

as

|S| = (|Y |× (|IC|−2)× (|F|−1)+1)2 (2)

+ (|Y |× (|IC|−2)× (|F|−1)+1) (3)

+ 1. (4)

The first term (2) consists of the number of possible states for two-car households. The element

|Y |×(|IC|−2)×(|F|−1) of (2) is the number of states for housholds with privately owned cars or

cars owned by sole proprietorship, while the element 1 of (2) is the number of states for households

with company cars. For these households, we indeed only have the information of whether a

company car is chosen or not. The exponent 2 stands for the two cars in the household. The

second term (3) is the number of possible states for one-car housholds and the last term (4) stands

for the absence of cars in a household. Assuming that cars can be at maximum 10 years old and

given the above definitions of IC and F , the size of the state space reaches the reasonable size of

3′783.

We note that not all households have access to company cars and some states of S are then

unavailable.

The action space A is constructed based on the following variables:

• The transaction ht in the household composition of the car fleet at year t. Every year,

the household can choose to increase, decrease or replace all or part of the fleet, or not

to do anything. We additionally make the simplifying assumption that a household cannot

purchase more than one car per time period. The enumeration (see Figure 1) leads to nine

possible transactions. Therefore we have ht ∈ H = {1, . . . ,9}.

• The annual mileage m̃c,t ∈ R
+ for each car c.

• The choice Ĩc,t ∈ IC of car ownership status.

• The fuel type f̃c,t ∈ F .

• The car state r̃c,t , i.e. the decision to purchase a new or second-hand car. We hence have

r̃c,t ∈ R = {0,1,2}, where level 0 means that no car has been bought, level 1 means that car

c is bought new and level 2 means that car c is bought second-hand.

Note that if Ic,t = 1,2, then we model the choice of mileage m̃c,t , fuel type f̃c,t and car state r̃c,t

for a car c for the next year. However, for Ic,t = 3, no information on the choice of mileage, fuel

type or state of the car (new or second-hand) for the next year is available from the data. Therefore

we do not model such decisions.

Each action at ∈ A can be represented as

at = (ht ,m̃1,t , Ĩ1,t , f̃1,t , r̃1,t ,m̃2,t , Ĩ2,t , f̃2,t , r̃2,t). (5)

From some particular states st , not all actions are available. Hence, we implicitly have at ∈
A(st) and the total number of actions must be obtained by enumerating all possible actions from

each particular state. Table 1 summarizes the number of actions that can be attained for households

with 0, 1 or 2 cars, depending on the type of transaction which is chosen. For example, a 1-car

household that decides to increase the fleet of 1 car has the choice between 3 types of car ownership
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Figure 1: The nine possible transactions in a household fleet

status, 3 types of fuel and 2 types of car state, leading to 18 possible actions. In the row ‘Sum’,

the total number of possible actions for households with respectively 0, 1 or 2 cars are reported.

Given that a household is in a state st and has chosen an action at , the transition function

f (st+1|st ,at) is defined as the rule mapping st and at to the next state st+1. In our case, st+1 can

be inferred deterministically from st and at , implying that f (st+1|st ,at) only takes two values: 1

when st and at lead to action st+1 and 0 otherwise.

Assuming that aD
t = (ht , ˜I1,t , ˜f1,t , ˜r1,t , ˜I2,t , ˜f2,t , ˜r2,t) gathers the discrete components of an action

at and aC
t =(m̃1,t ,m̃2,t) gathers the continuous components, the instantaneous utility can be defined

as:

u(st ,a
C
t ,a

D
t ,xt ,θ) = v(st ,a

C
t ,a

D
t ,xt ,εC(a

C
t ),θ)+ εD(a

D
t ), (6)

where variable xt contains socio-economic information relative to the household, θ is a vector of

parameters to be estimated. Expression v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) is a deterministic term, εD(a

D
t )

is a random error term for the discrete actions and εC(a
C
t ) captures the randomness inherent to

the continuous decision(s). Similarly as proposed by Rust (1987), the instantaneous utility has an

additive-separable form.
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Transaction name 0 car 1 car 2 cars

h1: leave unchanged 1 1 1

h2: increase 1 18 18 -

h3: dispose 2 - - 1

h4: dispose 1st - 1 1

h5: dispose 2nd - - 1

h6: dispose 1st and change 2nd - - 18

h7: dispose 2nd and change 1st - - 18

h8: change 1st - 18 18

h9: change 2nd - - 18

Sum 19 38 76

Table 1: Number of possible actions for households with 0, 1 or 2 cars (in the action space generated by the

discrete components of the choice variable).

3.3 Formulation of the discrete-continuous choice model in a dynamic program-

ming framework

As in a DDCM case (see e.g. Aguirregabiria and Mira, 2010; Cirillo and Xu, 2011), the value
function of the DDCCM is defined as:

V (st ,xt ,θ ) = max
at∈A

{u(st ,at ,xt ,θ )+β ∑
st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at )} (7)

= max
at∈A

{v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ )+ εD(a

D
t )+β ∑

st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)} (8)

In order to obtain a version of the Bellman equation that does not depend on the random utility

error term εD(a
D
t ), we consider the integrated value function V̄ (st ,xt ,θ), given as follows:

V̄ (st ,xt ,θ) =
∫

V (st ,xt ,θ)dGεD
(εD(a

D
t )) (9)

where GεD
is the CDF of εD.

In the case where all actions are discrete and the random terms εD(a
D
t ) are i.i.d. extreme

value, it corresponds to the logsum (see e.g. Aguirregabiria and Mira, 2010). We aim at finding a

closed-form formula in the case where the choices are both discrete and continuous too. In fact, a

closed-form formula is possible in the special case where the choice of mileage of each car in the

household is assumed myopic. This implies that individuals choose how much they wish to drive

their car(s) every year, without accounting for the expected discounted utility of this choice for the

following years3.
Under the hypothesis of myopicity of the choice of annual driving distance(s), the integrated

3This assumption was also made in the unpublished work by Anders Munk-Nielsen, University of Copenhagen. We

make this reasonable hypothesis here too.
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value function is obtained as follows:

V̄ (st ,xt ,θ ) =
∫

V (st ,xt ,θ )dGε(εD(a
D
t ))

=
∫

max
at∈A

{u(st ,at ,xt ,θ ,ε(at))+β ∑
st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)}dGε (εD(a
D
t ))

=
∫

max
aD

t

{max
aC

t

{v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ )}+ εD(a

D
t )+β ∑

st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)}dGε (εD(a
D
t ))

= log∑
aD

t

exp{max
aC

t

{v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ )}+β ∑

st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)} (10)

Similarly as in the case of a DDCM, the value function is obtained by iterating on Equa-

tion (10).

3.4 Choice of optimal mileage(s)

We assume that expression v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) of Equation (10) is the sum of the utility of

the discrete actions vD
t and the utility of the continuous actions vC

t :

v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) = vD

t (st ,a
D
t ,xt ,θ)+ vC

t (st ,a
D
t ,a

C
t ,xt ,εC(a

C
t ),θ) (11)

By assumption, each household can have at maximum two cars. This implies that for two-car

households, the annual mileage of each car must be decided every year. Expression

v(st ,a
C
t ,a

D
t ,xt ,εC(a

C
t ),θ) of Equation (10) must hence be maximized with respect to the two an-

nual driving distances. Given the additive form of Equation (11), we only need to maximize

expression vC
t (st ,a

D
t ,a

C
t ,xt ,εC(a

C
t ),θ) with respect to aC

t .

However, if a household owns two cars, we observe from the data that one car is generally

driven more than the other one, i.e. one is used for long distances while the other is used for

shorter trips. Hence, we can assume that the choice that the household actually makes is not the

independent choices of how much each car will be driven, but rather the repartition of the total

mileage that it plans to drive across the two cars.

This motivates the use of a constant elasticity of substitution (CES) utility function for the

choice of mileage(s), since it allows to evaluate the rate of substitution of mileages m1,t and m2,t :

vC
t (st ,a

D
t ,a

C
t ,xt ,εC(a

C
t ),θ) = (m

−ρ
1,t +α ·m

−ρ
2,t )

−1/ρ (12)

Parameter ρ is the elasticity of substitution of vC
t . Expression α represents the weight of the

mileage of one car relative to the other. It is a function of socio-economic characteristics about the

household xt and a random term εC(a
C
t ):

α := exp{γxt − εC(a
C
t )}. (13)

Here, γ is a vector of parameters to estimate. To simplify the problem, we will assume in a first

stage that α is only a constant to estimate. This implies that we assume no error term εC(a
C
t ). We

will later relax this assumption and assume that α has the form of Equation (13).

The choice of m1,t and m2,t must be made such that the budget constraint of the household

holds:

p1,t m1,t + p2,tm2,t = Inct , (14)

where pc,t := consc,t ·plc,t is the cost per km of driving car c∈ {1,2} in SEK/km, that is the product

of the car consumption consc,t and the price of a liter of fuel plc,t for that car. Variable Inct is the

share of the household’s annual income which is used for expenses related to car fueling.
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The above formulation of the CES utility fonction with the budget constraint has the following

advantages. First, the constraint enables us to solve the maximization problem according to one

dimension only. Such an approach has been considered by Zabalza (1983), in a context of trade-

off between leisure and income. Second, the use of a CES function is also convenient, since the

elasticity of substitution is directly obtained from the estimate of parameter ρ .

The optimal value of mileage m1,t is obtained by solving the following maximization problem:

max
m1,t ,m2,t

vC
t , such that p1,tm1,t + p2,tm2,t = Inct (15)

Assuming that we know what share of the household’s income is spent on fuel4, we can obtain

an analytical solution for m2,t :

m∗
2,t =

Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))

. (16)

We can then infer the value of the optimal mileage for the other car:

m∗
1,t =

Inct

p1,t
−

p2,t

p1,t
m∗

2,t (17)

=
Inct

p1,t
−

p2,t

p1,t
·

Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))

(18)

Consequently, we obtain the optimal value for the deterministic utility of the continuous ac-
tions:

vC∗
t =









Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))





−ρ

+α ·





Inct

p1,t
−

p2,t

p1,t
·

Inct · p
(−1/(ρ+1))
2,t

p
(ρ/(ρ+1))
2,t + p

(ρ/(1+ρ))
1,t α(−1/(ρ+1))





−ρ



−1/ρ

(19)

Then vC∗
t can be inserted back in Equation (11). The Bellman equation (10) becomes:

V̄ (st ,xt ,θ ) = log∑
aD

t

{

exp{vD
t (st ,a

D
t ,xt ,θ )+vC∗

t (st ,a
D
t ,a

C∗
t ,xt ,θ )}+β ∑

st+1∈S

V̄ (st+1,xt+1,θ ) f (st+1|st ,at)

}

, (20)

where aC∗
t = (m∗

1,t ,m
∗
2,t).

The integrated value function V̄ is then computed by value iteration.

3.5 Model estimation

The parameters of the DDCCM are obtained by maximizing the following likelihood function

L =
N

∏
n=1

Tn

∏
t=1

P(aD
n,t |sn,t ,xn,t ,θ), (21)

where N is the total population size, Tn is the number of years household n is observed and

P(aD
n,t |sn,t ,xn,t ,θ) is the probability that household n chooses a particular discrete action aD

n,t at

4For example, from 2006 to 2009, households in Sweden spent between 7.3 and 8.1 percent of their income on the

operation of motor-cars (Source: Statistics Sweden).
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time t. This probability is obtained as follows:

P(aD
n,t |sn,t ,xn,t ,θ ) =

vD
n,t(sn,t ,a

D
n,t ,xn,t ,θ )+ vC∗

n,t (sn,t ,a
D
n,t ,a

C∗
n,t ,xn,t ,θ )+β ∑sn,t+1∈S V̄ (sn,t+1,xn,t+1,θ ) f (sn,t+1|sn,t ,an,t )

∑ ˜aD
n,t

{

vD
n,t(sn,t ,

˜aD
n,t ,xn,t ,θ )+ vC∗

n,t (sn,t ,
˜aD
n,t ,

˜aC∗
n,t ,xn,t ,θ )+β ∑sn,t+1∈S V̄ (sn,t+1,xn,t+1,θ ) f (sn,t+1|sn,t , ˜an,t )

} (22)

The simplest way to estimate this type of model is using the nested fixed point algorithm

proposed by Rust (1987) where the DP problem is solved for each iteration of the non-linear

optimization algorithm searching of the parameter space. Our DP problem is quite simple because

of the transition function being deterministic. Still, we are in the case of a large state and action

space and we expect that it is computationally infeasible to estimate the model using the nested

fixed point algorithm. Instead we will adopt the approach by Aguirregabiria and Mira (2002)

which reduces the number of times the DP problem needs to be solved.

4 Illustrative example

As described in the previous sections, the discrete-continuous choice model is embedded into a

dynamic programming framework in order to account for the expected discounted utility of each

action. In this section, we present an illustration of the results of the value iteration algorithm, for

imposed parameter values.

4.1 Example of specification

As an example, we consider a simple specification of the deterministic (instantaneous) utility

relative to the choice of the discrete variables:

vD
t (st ,a

D
t ,xt ,θ) = C(st)+ τ(aD

t )+βAge(a
D
t ,st) ·max(Age1t ,Age2t), (23)

where Age1t is the age of the first of the two cars and Age2t is the age of the second car. Expres-

sions C(st), τ(aD
t ) and βAge(a

D
t ,st) are parameters that would typically be estimated on data. We

follow the approach proposed by Schiraldi (2011) and specify a constant C(st) relative to house-

holds owning at least one car and a transaction cost τ(aD
t ). The constant is included in order to

capture differences of preferences between households owning at least one car and households

without a car. The transaction cost is meant to capture the unobserved costs of actions involving

the acquisition of a new car, i.e. actions with transactions h2 (increase of 1), h6 (dispose of 1st and

change 2nd), h7 (dispose of 2nd and change 1st), h8 (change 1st) or h9 (change 2nd).

In order to illustrate the application of the DDCCM, we postulate values for the parameters

of Equation (23). The signs and values are chosen in order to match a priori expectations. For

example, in a one-car household, the older the car is, the more likely the household is to dispose

of it. Hence, we give a positive sign to parameter βAge. Assuming that owning at least one car has

a positive impact on choice (as in Schiraldi, 2011, we set C to 5 if the household owns at least a

car and to 0 otherwise. The other chosen parameter values are reported in Table 2. Parameter βAge

depends on the size of the household, on whether the first or the second car is the oldest and on

the transaction type. The transaction cost τ varies according to the different transactions types.

Likewise, we choose values for the parameters of the deterministic (instantaneous) utility rel-

ative to the choice of mileage. As described in Section 3.4, we assume that α is a constant and fix

its value to 0.3. The elasticity of substitution ρ is set to 0.5. Moreover we fix the discount factor

in the Bellman equation (20) to 0.7.
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βAge τ

Transaction name Case 0 car 1 car 2 cars all households

h1: leave unchanged 0 -1 -1 0

h2: increase 1 0 0 - -3

h3: dispose 2 - - 1 0

h4: dispose 1st
1st car is oldest - 1.5 1.5 0

2nd car is oldest - - 0 0

h5: dispose 2nd
1st car is oldest - - 0 0

2nd car is oldest - - 1.5 0

h6: dispose 1st and change 2nd - - 0 -4

h7: dispose 2nd and change 1st - - 0 -4

h8: change 1st
1st car is oldest - 1.5 1.5 -4

2nd car is oldest - - 0 -4

h9: change 2nd
1st car is oldest - - 0 -4

2nd car is oldest - - 1.5 -4

Table 2: Parameters for the deterministic (instantaneous) utility relative to the discrete actions

4.2 Results from the value iteration

Using the parameters of Section 4.1, we iterate on the Bellman equation (20) to obtain the value

function for an example of observation. The latter consists of a household with an annual income

of 530′000 SEK that spends about 8% of its resources on fuel (following the hypothesis described

in Section 3.4).

The program is implemented in C++ and the running time to obtain the value function is about

2 minutes on a 20-core computer.

Figure 2 shows boxplots of the value function for ages of car ranging from 0 to 35. As expected

we observe that the value function decreases as the maximum of the ages of the two cars increases.

This shows that the older the car is, the smaller its expected discounted utility becomes.

5We note that in this evaluation of the value function, we restricted the maximum of the age of the two cars to 3 years

for a better visualization of the difference of the results, but the upper bound for age can be increased.
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Figure 2: Value function

Probabilities of choosing a particular action can be computed using Equation (22). As an

example, we evaluate these probabilities for the above mentioned household, assuming that it has

a one private diesel car. We analyze the probabilities of leaving the household car fleet unchanged,

adding one car, disposing of the only car and changing the only car, as a function of the age of

the car (Figure 3). For comparison purposes, we do not only display the probabilities for the

above specified model (Figure 3(d)), but also for a model with the same specification but without

transaction cost (Figure 3(b)), and for static models with (Figure 3(c)) and without (Figure 3(a))

transaction cost. By static models, we denote models based on the assumption that households do

not account for the future utility of the choices of transaction, type of contract, fuel type and state

of the car.
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(b) Dynamic – without transaction cost
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(c) Static – with transaction cost
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(d) Dynamic – with transaction cost

Figure 3: Choice probabilities for different transactions, as a function of the age of the car.

Figure 3 allows to analyze variations of particular probabilities as a function of the age of the

car, e.g. the probability of replacing the only car in the household (denoted as changing 1st). As

expected (from the imposed sign on the parameter) we note that the probability of changing the

only car in the household increases as the age of the car increases.

Although we emphasize on the fact that no behavioral interpretation can be made on the model

at this point since all parameters have chosen values, we want to highlight that considering a

dynamic model can result in different choice probabilities than in the static case and it is a key

aspect to investigate. Moreover the introduction of a transaction cost also affects the trade-offs

between the transactions.

5 Conclusion

This paper presents a methodology designed to jointly model car ownership, usage and choice of

fuel type together with an example of application. One of the main properties of the model is that

it accounts for the forward-looking behavior of individuals, which is crucial in the case of demand

for durable goods such as car, since the purchase of a car affects the utility of an individual for the
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present and future years of ownership (Schiraldi, 2011).

In order to obtain a realistic model, we account for households’ decisions rather than individual

ones. We specify a CES utility function to capture substitution patterns that occur when two-car

households decide on the annual mileage of the two cars. We also consider a comprehensive

choice variable, that accounts for decisions that are usually jointly made, such as car ownership,

choice of fuel type and annual mileage.

The next steps in this research are (1) to validate the DDCCM by estimating it on synthetic

data generated from distributions of attributes of observations in the Swedish register of cars and

individuals and (2) to estimate it on the full register data. In a later stage, we will assess the impact

of policies implemented during the years of the data on the dynamics of the Swedish fleet and

perform a forecasting analysis of several policy scenarios that have already been defined in the

planning process of the Swedish government for the upcoming years.
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