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Abstract

In collaboration with the Swiss Federal Railways (SBB-GHFS), various challenges associ-
ated with pedestrian ows in train stations are discusseiti@texample of Lausanne railway
station. For this site, a rich set of data sources includiagel surveys, pedestrian counts and
trajectories has been collected.

The report is organized in three parts. First, an empirinalysis of the aforementioned data
sources is provided. The main focus thereby lies on theiidatibn of periodical movement
patterns both in time and in space. Second, a methodologgstonating pedestrian origin-
destination (OD) demand using various information sournekiding the train timetable is
discussed. This methodology is applied to the case of Laugseailway station, and results
are provided for the morning peak period. Third, a pedeastosv model is presented which,
for a given OD demand, allows to estimate pedestrian trawets and density levels based
on an empirical pedestrian fundamental diagram. This misdapplied to study pedestrian
movements in an underpass of Lausanne railway statiomdimgd an assessment of pedestrian
level of service.

Instead of focusing on mathematical details, the preserument provides a general overview
of the problem of modeling pedestrian ows in railway sta$athat is accessible to practition-
ers. Suggestions for further literature are provided thhmut the document.

v1.0

Keywords
pedestrian ows, public transportation, OD demand estiomtdynamic network loading,
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1 Introduction

Every train trip starts and ends with a boarding and alighgirocess, causing pedestrian ows
in train stations (see Fig. 1). For a long time, these owseheeceived relatively little atten-
tion by operators of railway systems. The growing occureenfccongestion in railway access
facilities is provoking more interest, including that o&itm users. Today, capacity limits of
pedestrian facilities in railway stations are regularlgaieed during peak periods, potentially
impacting the safety, eciency and comfort of passengers and the entire transortays-
tem. For a discussion of these aspects from a research goirgvg the reader is referred to
Hanseleeet al. (2015), who provide a recent review of the correspondiragdiure.

Figure 1: Commuters walking on platform/#3after leaving a train at Lausanne railway station.
On the left, S4 from Allaman to Palézieux is visible; on thghti S1 from Yverdon-
les-Bains to Villeneuve can be seen. (Photo: Sandro Campar8BB-CFF-FFS,
Date: Tuesday, May 15, 2012)

To optimize the design and operation of railway accessif@d] there is a general need to
better understand pedestrian travel demand within traitiosts. Such demand is typically
characterized by means of an origin-destination (OD) dehtable, representing the number
of people traveling between each pair of origin and destinatin a dynamic context, i.e., if
travel demand uctuates, time is usually discretized imtrvals, and separate OD tables are
calculated for each period. Pedestrians are then counted thiey leave their destination.
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Once the OD demand is known, pedestrian taonditions can be estimated, i.e., the ability of
the infrastructure to cope with a certain demand. In thatg@se, two steps are necessary. First,
demand is assigned to ‘routes'. The corresponding routdédres may be directly observed, or
estimated using a route choice model. In the case of Lausaiinay station, between most
OD pairs only a single route exists, and route choice isativbecond, the ows along routes
are computed using a network loading model that describegptbpagation of pedestrians
through space and time.

As shown in Fig. 2, the estimation of demand and infrastmattaupply considers various
information sources, such as the train timetable, trav&ieyis, sales data, as well as pedestrian
count and tracking data. In the presence of congestion,réhectconditions are generally
unknown, and a xed-point problem arises between the denestignator and the network
loading model (Cascetta and Postorig001). Otherwise, the interaction between demand and
supply is negligible, and the two estimation problems caodresidered independently. This is
the case for Lausanne railway station (see Sec. 3).

train timetable,
frequentation dat [ historical information} [ network Iayout}

demand

.

Pedestrian OD demand Network loading model

estimator

tra c conditions

[ link ow counts } [ trajectory recording%

Figure 2: Scheme of a framework for estimating dynamic pedesOD demand and pedes-
trian tra c conditions in railway stations. Shaded rectangles reptesgata sources
and the colored rectangles the actual demand estimatorkessitiee network loading
model.

This report is structured as follows. First, a data-drivexploratory case study analysis of
Lausanne railway station is presented that is useful forehdevelopment and benchmarking.
Second, a recently developed framework for estimating ODattel is applied to the same case
study, providing dynamic OD trip tables for pedestrian owghin railway stations. Third,
an aggregate network loading model is outlined, useful ier éstimation of demand in the
presence of congestion, or for assessing the level-ofegenf pedestrian facilities in terms
of density levels and walking times. This model is again ggubto a case study involving
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Lausanne railway station. The presented research has beduaated in collaboration with the
Swiss Federal Railways, SBB-CFF-FFS, henceforth abltexvizs SBB.

2 Case study

Throughout this report, Lausanne railway station servesaas study illustrating various as-
pects of pedestrian ows in train stations. This choice istiwated by two reasons. First,
due to its proximity to EPFL as well as previous studies inftaenework of Léman 2030, a
detailed knowledge of both infrastructural and operati@spects is available. Second, Lau-
sanne represents a railway station of national importam¢erms of passenger turnover and
train movements. Fig. 3 shows an aerial view of Lausanneagilstation. A corresponding
schematic map is provided in Fig. 4.

Figure 3: Aerial view of Lausanne railway station

Lausanne railway station encompasses the passing traelsafid the dead end track #70.
Track #2 is used by freight trains and through taonly, as it is not accessible by any platform.
Except for platforms #1 and #70, all platforms are accesdioim the city solely through two
pedestrian underpasses (PU), PU West and PU East. Platfbrsnotly accessibly from PU
West. Longitudinally, the train station is divided into s&s A-D, where the historical ordering
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Figure 4: Schematic map of Lausanne railway station, enassipg ten tracks (#1-#9, #70)
that are served by platforms #1, #3#56, #78, #9 and #70. Platforms are con-
nected by two pedestrian underpasses (PU) referred to asé3uand PU East, each
partially covered by a pedestrian tracking system (cooedimg areas are shaded in
green). Dashed lines represent network links that cannalireetly shown on the
scheme due to the chosen two-dimensional representation.

from East to West is adopted. The blue graph in Fig. 4 showsdneesponding walking
network.

Several data sources are available for Lausanne railwégrstal hese include pedestrian tra-
jectories covering the pedestrian underpasses (provig&fsinSafe, Lausanne, Switzerland),
directed pedestrian counts at several exit ways (provige®3E GmbH, Zirich, Switzerland),
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as well as various historical surveys and sales data. THeSA$e data set containing pedes-
trian trajectories has been collected explicitly for thegant study, representing a particularly
useful resource for analysis and model development.

3 Data analysis

A detailed exploratory analysis of the aforementioned datarces associated with Lausanne
railway station has been conducted. The analysis is latggded on the morning peak period
between 07:00 and 08:30 of ten "normal’ working days, spmeddetween January and April
2013. Speci cally, these days include January 22 and 23rUaeh 6, 27 and 28, March 5,
as well as April 9, 10, 18 and 30. They represent typical wagkd Tuesday, Wednesday,
Thursday) with a low level of delay. The selection has beedertsy SBB based on the actual
train timetable data and is referred to as "10-day refersate

3.1 Periodic ow patterns

Pedestrian ows in railway stations show strongly recutrgatterns, which are among other
factors induced by the cyclic train timetable and the/deght or working dayweekend rhythm.
In the following, periodic patterns during the course of alea typical working day, as well
as the morning peak hour are considered.

Fig. 5 shows the periodicity of demand over a typical workimgek. The period between
February 25 and May 19, 2013, is used for this analysis. Apdhd 2 are excluded, as no
tracking data is available on these days.

The total number of pedestrian visits in the two pedestriatietpasses of Lausanne railway
station (PU West and East) is slightly below 120,000/gag. On Fridays, Lausanne railway
station is busier than during the week due to weekly comrmsutturning to their principal
place of residence, as well as due to weekend travelers.

In Fig. 6, the periodicity of demand over a typical day is showhe evening and morning

peak hours stand out with an hourly demand of around 14,080 p&hich is several times

larger than the average hourly demand. While the morning pegod is relatively short, the

evening peak period spreads over almost four hours. ThoogWwisible from the shown graph,
the busiest 60-minute period in Lausanne railway statidretsveen 07:30 and 08:30. In the
subsequent analysis, this period is mainly used as casg stud
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Figure 5: Mean daily pedestrian demand over a week in thegpeaie underpasses of Lausanne
railway station (PU West and PU East). Results obtained foeraod of 12 weeks
(February 25 to May 19, 2013 without April 1 — 2, 2013 due toklat data) as
provided by VisioSafe. Standard deviations are arouthf; 000 pedestrians for a
typical working day.
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Figure 6: Mean hourly pedestrian demand over a day in thespegie underpasses in Lausanne
railway station (PU West and PU East). Morning and evenirakpg®urs stand out
clearly. Data: 10-day reference set, 2013.
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On the time scales studied so far, demand patterns aree'stabindicated by relatively small
error bars (the standard deviation amounts typically te taan 10% of the mean values in
Fig. 5 and Fig. 6). Regarding minute-by-minute demand insiaame's PUs, uctuations across
days are much larger. In Fig. 7, demand is aggregated by timatenintervals. The shown 90-
minute interval represents an average over the 10-dayereferset. While absolute demand
levels are lower outside rush hours, the underlying pattgttmpeaks around :10 and :40 every
hour is characteristic for the whole day.
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Figure 7: Pedestrian demand in the morning peak hour bet@@®® and 08:30, aggregated
by two-minute intervals, in the pedestrian underpassesaokanne railway station
(PU West and PU East). Data: 10-day reference set, 2013.

The average pedestrian demand aggregated by two-minetgaig varies roughly by one or-
der of magnitude, i.e., between 50 and 500 pedestrians pertenilf demand is aggregated by
the minute, the results are largely the same, except thadatd deviations are slightly larger
(results not shown). Given the observed temporal uctustj@n appropriate level of aggrega-
tion for estimating OD demand is in the order of a few minutes: the estimation of demand
presented in Sec. 4, a dynamic model with a resolution of aneteis considered.

3.2 Train-induced ows

Pedestrian ows depend signi cantly on train arrivals anepdrtures. In the following, an
empirical relationship is established between the ara#dains and ows from platforms into
PUs, i.e., the ows measured at the interface between platircess ways and PUSs.
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Fig. 8 shows ows from platforms #3 and #%6 into PUs as measured in the morning peak hour
of January 22, 2013. Results are shown for a single day asaraval times vary signi cantly
across days, often due to "early arrivals'. Vertical linesate train arrivals on corresponding
platforms. Clearly, there is a strong correlation betwéeratrrivals of trains and the magnitude
of the ow. In Sec. 4, a mathematical model is proposed thacdbes this relationship in
detail.
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Figure 8: Train-induced ows from selected platforms intd$?on January 22, 2013, observed
using VisioSafe's tracking system. Vertical lines indeattual train arrivals.

The alighting volume of a train varies with each day. Assugr@mormal distribution, the stan-
dard deviation amounts to approximately 20% of the meanohtrast, the ow rate at which
passengers reach the bottom of the access ramps from plati@ries little in time. These
unloading rates remain almost constant in the couple of tegiollowing train arrivals.

3.3 Speed distribution

Fig. 9 shows a speed histogram as observed in both PUs daengarning peak hours of the
10-day reference set. A total population of 165,275 pe@eslis considered.

A mean velocity of 4.13 kit is observed. The median lies at 4.04/kmThese values are
slightly lower than reported in the literature. For insteng/eidmann (1992) reports a mean
speed of 1.34 iis, or 4.8 knih.
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Figure 9: Histogram of speed for pedestrians during the mgrpeak hour in the two pedes-
trian underpasses of Lausanne railway station (PU West Bndd3t). Data: 10-day
reference set, 2013. Adapted from Anlatral. (2013).

Using the same dataset, the occurrence of a density-spkidmehip has been investigated
by Nikolic et al. (2015). This relationship is typically referred to as "p&tdan fundamental
diagram’ (see also Sec. 5). Alternatively, at a spatiallyeraggregated level, the relationship
between the occupation, i.e., the total number of pedestiman area, and travel times may
be investigated. Such an approach is pursued in the foltpwin

3.4 Density-travel time relationship for PU West

Fig. 10 shows the correlation between occupation in PU Wedtselected travel times as
observed in 2,890 pedestrian trajectories associatedihatmorning peak period of the 10-day
reference set. The occupation is assumed to be equal to thieemwf people that are present
when a pedestrian enters PU West. Travel times correspahe fmaths from the lower end of
the ramp associated with centroid #1C (see Fig. 4) to thenSaditin PU West associated with
centroid SW, as well as to the platform access ramp assdaiatile centroid #34C.

According to this gure, the distribution of travel timesiislatively wide and disperse at low
values of occupation, and slightly narrower at larger désssi The mean travel times do not
depend signi cantly on the overall level of occupation. Amadysis of the evening peak hour
as well as of the relationship between occupation and ttawels in PU East yields the same
result. Therefore, the level of interaction between denartisupply due to congestion can be
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Figure 10: Correlation between pedestrian occupation eledt®d travel times for a population
of 2,890 pedestrians crossing PU West along two selecteggolData: 10-day
reference set, 2013.

considered negligible in the case of Lausanne railwaystatAverage and median residence
times within PUs are around 40 s, with a standard deviatidtvc.

3.5 Boarding, alighting and transferring passengers

As an alternative to pedestrian tracking data, the travelesuHOP ("Hochrechnung Person-
enverkehr', see OleseR006, for a description. Data from 2010.) can be used to astiitine
number of incoming and outgoing passengers in Lausanmneaastation. Fig. 11 shows the
number of boarding, alighting and transfer passengersaday as extracted from this data.

8,000 —e—boarding
——alighting

6:000! —— transfer
E\ )
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g 4,000|

2,000

O | |
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Figure 11: Estimated number of boarding, alighting anddf@ming passengers over one day
extracted from HOP 2010 data. Adapted from Anletial. (2012).
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Between 7:00 and 8:00, the alighting volume (5,975 ped)gbéi than the boarding volume
(3,536 ped), whereas in the evening rush hour between 1A &00 the number of board-
ings is higher (2,749 vs. 5,163 ped). Between 7:00 and 8t#etare on average 10,287
passenger movements; between 17h and 18h, the averagetanm8r626 movements. Ac-
cording to these results, people mostly come to Lausannevddk and leave the city again

in the evening. The percentage of transfer passengerstibgiev 10% and nearly constant
during the day.

3.6 Comparison of pedestrian trajectories and ow counts

VisioSafe's sensor system records pedestrian trajest@oeoss space and time. From this
data, ows across arbitrary cordons can be computed and ageddo ow counts from other
sources. This represents one way of assessing the rejiadfithe data.

Fig. 12 shows a comparison of measured out ows from PU Eagitds North (including both
the corridor leading to the metro and the stairways up to taeePde la Gare) as recorded by
ASE and VisioSafe in the morning peak hour of January 15, 2013

300
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- - Visiosafe

2501

2001

150

100

out ow (ped/min)

50

07:00 08:00 08:15  08:30

Figure 12: Comparison of measured ow leaving PU East towa¥drth, as recorded by Vi-
sioSafe's pedestrian tracking system and ASE's ow sensordanuary 15, 2013.
Adapted from Zimmermanet al. (2013).

Both curves show a similar pattern. The VisioSafe data #liginderestimates ows as com-
pared to the data provided by ASE. This discrepancy is prablyndue to the fact that whenever
the system looses track of a pedestrian, the whole trajecdaiemoved (Alahet al., 2013).

Given the di erent techniques and scope, the agreement between the tavealaices seems

satisfactory.

11
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Based on the foregoing explorative data analysis, two mioaleleworks for demand estimation
and network loading are developed as described in the follpw

4 Demand estimation

In this section, a brief description of a framework for dyneally estimating pedestrian de-
mand in railway stations is provided, and results from a sasdy analysis of Lausanne railway
station are discussed. For a mathematical descriptionedirémework, the reader is referred
to Hanseleet al. (2015).

The problem of estimating OD demand consists in nding anneste which, if applied to
the pedestrian network of the train station, is "most caestswith the corresponding train
timetable, historical surveys, and all other data sourbast dre available for the estimation
(Cascetta and Improt2002). In the case of Lausanne railway station, all the afiergioned
data sources are used with the exception of pedestriactivajedata, which is considered for
validation purposes instead.

The train timetable is considered in the estimation protgsseans of the pedestrian ows
that it induces. Fig. 13 provides a schematic represemntafia potential classi cation of such
ows, which are divided in boardinglighting ows at train doors, as well as exit and access
ows on platform access ways.

”””” PR, PN, SR, P,
«~— 1] [c = — 8] [A =/

<> boardindalighting ows
—> platformexit ows
—> platformaccessows

Figure 13: lllustration of train-induced ows on platfornasd platform access ways.

In the estimation framework considered here, platform exits succeeding the arrival of a
train are considered speci cally (see Sec. 3). For that psep a piece-wise linear model is
developed as illustrated in Fig. 14. After the arrival of @ity a certain time elapses until the
rst pedestrians reach the platform exit ways. This "deatktimay be due to a delay in the
opening of doors after the train has stopped, or due to thidmgalime required to reach the exit
ways. Subsequently, a constant ow is established, whogmitade is mostly limited by the

12
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capacity of the exit ways. This assumption is based on eagbmbservations, showing that the
exit ways typically represent the bottleneck in that pafac ow situation (Benmoussat al.,
2011). Once all alighting passengers have left the accegs, Wee ow reaches again zero.

— observation

" ow capacity"

cumulative arrivals

arrival time

H_/: . . .
dead time alighting time

time

Figure 14: lllustration of a piece-wise linear model for cising ows of alighting passengers
on platform exit ows following the arrival of a train.

By assuming that the parameters such as ow capacity antitaligy volume are distributed,

a stochastic model formulation results. Such a formulaiamsed in Fig. 15 to predict train-
induced platform exit ows on platform #6 in Lausanne railway station. The good agreement
between the prediction and the observation underlines ulaétg of the developed model in
estimating the ows induced by train arrivals.
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Figure 15: Observed and simulated platform exit ows on Affl, 2013 at platform #® in
Lausanne railway station.

The same model can be applied to predict ows on exit wayslgflatforms, if the correspond-
ing model parameters are known. Some guidelines on how #repe estimated are provided
by Molyneauxet al.(2014).
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The OD demand is estimated from count data, trajectorieows, where the latter may be
directly observed or computed by the previously describedehfor train-induced ows. In the

process of estimating OD demand, some assumptions regdhdiprevailing tra ¢ conditions

are necessary. They are typically estimated by the netwsa#ihg model, as illustrated in
Fig. 2. Since ows in walking facilities in Lausanne railwayation are largely uncongested
even during peak periods (see Sec. 3), the walking speedusnasl to be independent from
demand. Speci cally, for the estimation of demand discdssehis section, the walking speed
is assumed to be normally distributed with a mean of 1.34 amd a standard deviation of

0.34 ms (Weidmann1992).

In the following, the developed estimation framework is lagpto study the demand during
the busiest 30-min period during the morning peak hour inskeane railway station. In the
considered interval between 07:30 and 08:00 in the year ,2P43rains arrive and depart,
as can be seen from Table 1. As discussed in Section 3, thendeim&nown to uctuate
signi cantly across days even if they are “similar’, sucteas. a series of consecutive Tuesdays.
For that reason, the demand is jointly estimated for thedyrdference set de ned in the same

section.

For this set of days, Fig. 16 provides the evolution of thaltdemand during the morning peak
period, showing both the mean, and the standard deviatiod. bss indicated by the standard

deviation band, the day-to-day variation is highly sigmird.
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Figure 16: Total demand in Lausanne railway station dutiregnhorning peak period. The pair
of dotted lines represent the limits of the standard demmbiand ( 1 std). Data:

10-day reference set, 2013.

The average cumulative demand over the studied 30-mingarwunts to 7,906.5 ped, repre-
senting about 8% of the daily station throughput (AmagcR6d 2). The highest average demand
is found between 7:39 and 7:40, where the overall demandarateints to 557.3 péahin. A
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Table 1: O cial train timetable of Lausanne railway station betweerB07 08:00 (with a
margin of 7 min before and after) for the period of December2il1 to December
14, 2013. Regional trains account for the largest numbeophections, subdivided
into suburban (S), Regio (R) and RegioExpress (RE) traingdithonally, there are
seven express trains, classi ed as InterRegio (IR), Intgr@C) and InterCity tilting
(ICN) trains. These interregional trains arrive and depad relatively short period
between 7:39 and 7:46, and 7:42 and 7:50, respectively.n@wuepresent the train
number (train no.), associated track (#), scheduled arivee (t), origin of train,
scheduled departure timg)and destination of train.

Train no. #‘ ta Origin ‘ tg Destination
S2112917 70 7:24 Payerne
S312318 8| 7:24 \Villeneuve 7:26 Allaman

S2 12217 1| 7:26 Vallorbe 7:30 Palézieux

RE 4060 7| 7:28 St-Maurice

S212218 5| 7:30 Palézieux 7:32 Vallorbe
S312317 3| 7:33 Allaman 7:35 Villeneuve
S2112918 70 7:36 Payerne

IR1712 6| 7:39 Sion 7:48 Genéve-Aéroport
RE 2607 1| 7:39 Genéve 7:42 Romont

IC 706 5| 7:40 Zirich HB 7:42 Geneve-Aéroport
ICN 1517 8 7:45 St Gallen

IR 1407 3| 7:42 Genéve-Aéroport| 7:46 Brig

IR 1710 7| 7:42 Brig 7:45 Geneve-Aéroport
IR 1606 4| 7:43 Neuchéatel

IR 2517 1| 7:46 Geneéeve-Aéroport| 7:50 Luzern

RE 2710 9| 7:49 \Vevey 7:51 Geneve

S 12017 5 7:49 Vallorbe

S1112820 8 7:55 Yverdon-les-Bains
S112119 3| 7:56 Yverdon-les-Baing 8:00 Villeneuve

S4 12420 6| 7:56 Palézieux 7:58 Allaman

RE 4024 70| 8:00 Payern&Romont

S112120 7| 8:02 \Villeneuve 8:04 Yverdon-les-Bains
S4 12419 4| 8:02 Allaman 8:04 Palézieux
S1112819 3| 8:05 Yverdon-les-Baing

R 12014 8| 8:06 St-Maurice 8:08 Renens

quarter of an hour later, between 7:54 and 7:55, the meanmtreaches a low of 112.0 pleain.
Within only a couple of minutes, the average demand thugsdry almost a factor of 5. Com-
pared to the average hourly demand reported for the morreagg pour between 07:00 and
08:00 in Fig. 6, amounting to 13,759.4 gledor 229.3 pefinin), the overall peak is almost 2.5
times as large, underlining the importance of a ne-grairdgthamic estimation.
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To consider the spatial distribution of demand, the lattay ine aggregated over time. Fig. 17
shows a "Circos' diagram of the average pedestrian OD deffamgwinski et al.,2009). Cen-
troids are grouped into a set of ten aggregated centroipiegenting the railway platforms #1,
#3/4, #96, #78, #9 and #70, the entrances North and South, the passagewsyrhetro, and

a collection of shops. Blue strips represent pedestriars emanating from railway platforms,
green those originating at the entrance ways North and Sautell as at the interface to the
metro station, and red strips pedestrian demand emanatimgane of the sales points. Accord-
ing to this classi cation, around 44.12% of all station w8k represent inbound passengers,
31.18% represent outbound passengers, 16.42% are trgaseengers, and the remaining
pedestrians represent local users.

Figure 17: A Circos diagram representing the average pealeSDD demand in Lausanne
railway station in the morning peak period between 07:30 @8t@0. Blue strips
represent inbound and transfer passengers that alightdryain, green strips out-
bound passengers or local users, and red strips custonaginsdeany of the three
sales points, i.e., the origin of streams represent depgnain their color either
train platforms city/metrdbus or shops Data: 10-day reference set, 2013 (see
Hanseleret al., 2015, for more details).
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A further way of visualizing demand is by means of network @wFig. 18 shows a map of
the estimated minute-by-minute link ows for the time petibetween 7:40 and 7:48 on April
30, 2013. Here, the demand estimate of a speci ¢ day is chasenhallows to visualize the
demand peaks caused by individual train arrivals and deeet

Between 7:40 and 7:41, the arrival of IR 1712 from Sion at B38s still discernible by the
origin ow it creates on platform #&. In the time period considered, this train is among
those with the highest alighting volumes. During 7:41 amtR7the arrival of IR 1606 from
Neuchatel on track #4 can be seen by the trace it leaves iretiesfrian ow map. Within less
than a minute, IR 1710, IC 706 and IR 1407 arrive on platformatf7:42:24, platform #5 at
7:42:59, and on platform #3 at 7:43:18, respectively. Esflge¢he former two represent major
lines (from Brig and Zirich), causing large pedestrian nmogets. Their impact is visible in
Fig. 18d and 18e. After the last arrival of a train, IR 251 hfrGeneva arriving on platform #1
at 7:44:37, pedestrian ows decay, as can be seen from Fgyah8 18h.
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(a) 7:40-7:41 (b) 7:41-7:42
(c) 7:42-7:43 (d) 7:43-7:44
(e) 7:44-7:45 (f) 7:45-7:46
(g) 7:46-7:47 (h) 7:47-7:48
10 pedmin 100 pedmin
0 25 50 75 100 pedmin

Figure 18: Pedestrian ow map for Lausanne railway statisrestimated for the time period
between 07:40 and 07:48 on April 30, 2013. The shading oEkli@presents the
cumulative link ow over a minute in both directions. The diater of centroids
represents the minute-by-minute origin ow.

18



Modeling pedestrian ows in train stations: The example aficanne railway station April 2015

5 Network loading model

Origin-destination demand alone reveals little about etgumbtra c conditions. To assess the
latter, the interaction between infrastructural supplg @emand needs to be taken into ac-
count. Similarly, if the demand for a congested railwayistais to be found, the consideration
of that interaction is key in the estimation process as wetir both problems, a pedestrian
network loading model is necessary. In the following, suchael is described and applied
to investigate density levels in PU West of Lausanne railsiion. The focus is again on
the presentation of the main ideas. The reader interestedihematical details is referred to
Hanseleet al. (2014).

In the development of the pedestrian network loading matéd, assumed that the network
topology and demand are known a priori. Speci cally, for@#destrians, the origin and desti-
nation, as well as their route is assumed to be given at theeggte level. The framework for
OD estimation described in Sec. 4 may be used to obtain tlusmation.

Instead of predicting the behavior of individual pedesisiaan accurate prediction of travel
time distributions and density levels is aimed for. For thatpose, an empirically observed
density-speed relationship is used to describe ¢raonditions. Fig. 19 shows the correspond-
ing relationship (Weidmanri992). In the same gure, additionally the "hydrodynamiav'o

is shown, representing the ow per unit of length that resditir a given density in case of a
uni-directional motion.

1.5 1.5
1:34
-1 1:22
1 11 =
o) 0
[%2]
E 5
> =
05 105

| I N
0 1 1.75 3 4 554 60

k (pedm?)

Figure 19: Average pedestrian speedlid blug and speci ¢ ow (dashed repas a function of
density according to Weidmann (1992).
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To apply the aforementioned density-speed relation, viddkspace is partitioned into a set of
cells as illustrated in Fig. 20. For each cell at each poininre, the density is calculated, and
based on the relationship shown in Fig. 19, the correspgnadin is computed. It is thereby
assumed that the walking speed within a cell is the same idilttions, i.e., isotropy of
walking speed is assumed. This is a fair assumption for gpnddhgested ows or those that
are inherently uni-directional.

Entrance

! [ | w Railway lind
| SR S
- u } iy platform
ot x i T
—— o Lo oA ]

| | | |

| | | |
——— Lo { IR S

Figure 20: Space is discretized into cells (delimited bytetbtines). Contiguous sets of cells
represent areas (delimited by dashed lines). Each pealestriassigned to a se-
quence of these areas, which is referred to as a route (dtestby an arrow).

The density in cells can be used to assess the perceived t@ntbperformance of a facility,
or more generally its “level of service' (LOS). Fig. 21 ilttetes di erent levels of pedestrian
density by means of pictures taken with a CCTV camera in Batway station. Also, the LOS
scale recommended by the US-American National Cooperéliggaway Research Program
(NCHRP) is shown, representing one of the most common atasisin schemes for pedestrian
density levels (Fruin1971). LOS level A represents the most favorable conditamd LOS
level E the least favorable one.

In the following, the developed pedestrian network loadimgdel is applied to a case study
involving Lausanne railway station. Fig. 22 shows the dgnsiaps of PU West as derived
from pedestrian tracking data, and as computed by the nktlwading model. In the gure
captions, train arrivals relevant for each time intervaliadicated. As can be seen, train arrivals
induce pedestrian waves that propagate through walkinljtiee and potentially cause local
congestion.

The proposed network loading model is able to reproducevbl@ton of local pedestrian den-
sity relatively well. The highest pedestrian densities@yserved between 7:41 and 7:43 due
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(@) LOS A (b) LOS B

(c)LOSC (d) LOS D

LOS Pedestrian density

k< 0.179 [m?]
0.179 k< 0.270
0.270 k< 0.455
0.455 k< 0.714
0.714 k< 1.333
1.333 k

BRLEEN

(e) LOSE (f) Level-of-service scale provided by
NCHRP for pedestrian walkways (HCM,
Exhibit 18-3).

Figure 21: Visualization of level of service in terms of pstt@n density in the train station
hall of Bern (Source: SBB-I-AT-BZU-PFL) as well as a levels#rvice scale rec-
ommended by the US-american transportation authorities.

to various incoming trains. The level of service lies in taage between A and E, i.e., densi-
ties are generally below.333 m 2. The model slightly underestimates the level of congestion
during the peak minutes 07:41-07:44. According to the oleskdata, a region of high density
forms along the center line of the corridor. In the model prgéah, space is occupied more
evenly, i.e., densities are overestimated laterally, ardktestimated along the center line. The
non-uniform use of space may be due to a lower perceived abaifing walls. Small “visual’
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observed
estimated
observed
estimated
observed
estimated

(a) 7:40-7:41: Relatively (b) 7:41-7:42: Arrival  (c) 7:42-7:43: Arrival of

low occupation. of train IR 1606 at train IR 706 at 7:41:24
7:40:20 on platform on platform 36.
3/4.

ks g B 5

e g e @

3 £ ? £

s g s g

(d) 7:43-7:44: Arrival  (e) 7:44-7:45: Gradual de-
of train IR 1407 at crease in pedestrian oc-
7:42:20 on platform cupation.

3/4.

Figure 22: Pedestrian density map of PU West in Lausanngagistation for the time period
between 7:40 and 7:45 on January 22, 2013. For each timedpefrione minute,

the resulting maps obtained from pedestrian tracking daltadgrved) and model
estimates (estimated) are shown. Color scale see Fig. 21.
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obstacles that are present such as trash bins or ticketngenatichines may be at the cause.
For the overall assessment of the level of service, this @imemon seems rather of limited im-
portance, and the accuracy of the model is comparable orisupe others, such as the social
force model (see Hanselet al., 2014, for details).

6 Conclusions

The main ndings of a three-year research collaboratiomieen EPFL's Transportation Center
and SBB's railway access division (I-AT-BZU) have been préed. At the example of Lau-
sanne Railway station, various aspects of pedestrian diarah ow in railway stations have
been analyzed, and a dedicated modeling framework has log¢iamed.

The developed framework consists of a demand estimator aretveork loading model. It
represents a powerful tool to assess and optimize the dasigoperation of railway access
facilities. Four concrete examples may be mentioned thetrhte its wide range of applicabil-

ity:

When dimensioning walking facilities such as a pedestriadegpass, the developed
framework provides a precise instrument to optimize iriftagural investments. This
applies to both the construction of new facilities and theokation of existing ones.

The framework allows to intelligently place sales and ssr\ypoints such as shops or
restaurants. For instance, these may be placed such thantheed ow', i.e., the
additional pedestrian ow caused by these attractors, rd@mmal, or the framework may
be used to assess the attractiveness of certain locati@alust rental prices.

The impact of the train timetable on the expected level ofiserin pedestrian facilities
can be predicted. Arrival and departure times of trainsheittain-track assignment may
be optimized to minimize the expected congestion on platfoor in walking facilities.
The developed framework provides a basis for real-time gigid@ monitoring and crowd
control in railway stations. To minimize congestion and ma@xe safety, pedestrian ow
could be controlled during peak periods (seeetal.,2014, for an example from China),
or during mass gatherings such as football games (seeeBakr2008, for an example
from Austria).
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