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Abstract

This article reports on the realization and on first appioret of the Cadyts (“Calibration of
dynamic traffic simulations”) calibration tool. The pressshfirst version of Cadyts calibrates
disaggregate demand models of dynamic traffic assignmmandaiors from traffic counts. The
tool is broadly applicable in that it (i) makes only very mddsumptions about the calibrated
simulator’s workings and (ii) allows for various modes ofhaical interaction with the simu-
lation software. The article provides a both conceptualtactnical overview of the tool and
exemplary demonstrates its applicability to two differeatfic microsimulators.
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1 Introduction

Iterated microsimulations have become a prominent salytrocedure for the dynamic traf-
fic assignment (DTA) problem, and a wide variety of free, ,eMIATSIm (accessed 2009);
SUMOQO (accessed 2009), not-entirely-free, e.g., DRACULAc&ssed 2009); DynaMIT
(accessed 2009), and commercial, e.g., TSS Transport &ionulSystems (accessed 2009);
INRC (accessed 2009); Quadstone Paramics L_td. (acces88) 2imulation software pack-
ages has become available in the last decades. Argualslgubtess is to a large extent due to
the intuitive workings of microsimulations when comparediathematically more involved
analytical DTA solution approaches (Peeta and Ziliasktg2001).

However, this advantage comes with drawbacks: (i) Trangparosimulation also requires
behavioral modeling at the individual level, which is a datmgry and methodologically chal-
lenging problem.(Bowman and Ben-Akiva, 1998; Vovstal., [2004), and (ii) intuitive analo-
gies alone are insufficient to explain the dynamics of isdd TA microsimulations (Cascetta,
1989; Nagekt al,, 11998). These difficulties have limited the development atiematically
consistent tools for the calibration of DTA demand micragliaions from traffic counts to
approaches that at some point in the process aggregate ri@ndento macroscopic quanti-
ties, e.g., Ashok (1996); Antoniou (2004); Zhou (2004), ethon the one hand improves the
mathematical tractability but on the other hand discardshmaf the disaggregate information
available in the simulation.

This article reports on the development of the freely aldd&adyts (“Calibration of dynamic
traffic simulations”) calibration tool, which aims to overoe these difficulties (Flotterdd,
2008). Cadyts is compatible with a broad class of DTA micragators. It calibrates the
disaggregate demand in the simulation from readily avlalabnsor data such as traffic counts.
While the focus of this text is on the calibration softwarel ais applicability, the presenta-
tion also provides a basic theoretical development of théhate Further material, including a
software manual, the sources of the calibration tool, amt@able code can be found on the
Cadyts web site (Cadyts, accessed 2009).

The remainder of this article is organized as follows. Sed8 outlines the scope of the cali-
bration. Section]3 provides some background on the unaerlyiethodology. Sectidd 4 gives
two examples of how the calibration can be linked to an exisDTA microsimulator, either
through function calls or file exchanges. Finally, Secfibcofcludes the article and gives an
outlook on future developments.



2 Scope of the calibration

Informally, the DTA problem is to attain consistency betweedynamic model of travel de-
mand and a dynamic model of network supply (traffic flow dyr@hiln a fully disaggregate
DTA microsimulator, every traveler is modeled as an indinibdagent. The travel intentions of
an agent are represented by its plan, which typically cosepra sequence of trips that con-
nect intermediate stops during which activities are cotetlliancluding all associated timing
information. This terminology comprises trip-based m&naulations when considering every
single trip as an independent plan of an independent agent.

The Cadyts tool is designed to interact with a stochasticiterdtive DTA microsimulator.
Stochastic means that at least the agent behavior (i.epldéimechoice) is non-deterministic.
Iterative means that the simulator runs according to tHeviahg logic:

1. Initialization.
2. Iterations: Repeat the following until stationary cdrais are reached.

(a) Demand simulation: All agents select new plans baseth@®métwork conditions
of previous iterations.

(b) Supply simulation: The plans of all agents are simulbaisty executed in the net-
work.

This logic is equally applicable to simulate an equilibrio@sed planning model and a telem-
atics model where drivers are spontaneous and imperfedtymned. From a simulation point
of view, the only difference between these models is thatqnlierium demand simulator
typically utilizes all information from the most recent §psimulations, whereas a telematics
demand simulator generates every elementary decision laheoply based on such informa-
tion that could have actually been gathered up to the aaogmbint in simulated time (Bottam,
2000). In either case, the purpose of the iterations is taiolobnsistency between the demand
and the supply.

The calibration adjusts the plan choice probabilities bagknts such that they result in sim-
ulated network conditions that are consistent with theditrabunts. Note that the choice of a
plan includes the choice of a complete set of departure tforesl trips contained in the plan.
In order to technically apply the calibration tool to a miraulator, the following additional
operations are needed:

1. Initialization. When the calibration is started, it need be provided with all available
traffic counts and some further parameters.

2. Iterations. The calibration is run jointly with the simatibn until (calibrated) stationary
conditions are reached.



(a) Demand simulation: The calibration needs an access$ipdhre simulation in order
to affect the plan choice. There are various ways to redhize tiepending on the
concrete simulator.

(b) Supply simulation: The calibration needs to observesthmilated network condi-
tions in order to evaluate their deviation from the trafficiots.

How these tasks are realized in detail depends on the simmlsystem at hand. Sectidh 4
gives two examples.

3 Some background

First, a mathematical formulation of the calibration pehlis given in Section 3.1. Second,
some implications and the current implementation of thisnidation are outlined in Section

B.2.

3.1 What problem does Cadyts solve?

To begin with, the familiar problem of estimating path flows ( trips) between a set of orig-
in/destination (OD) pairs from traffic counts is conside(@dll et al.,|1996, 1997; Nie and Lee,
2002; Nieet al., [2005). The largest possible number of trips between ODrpadenoted by
d,, the symbolC,, represents the set of available routes that connect ODnpandd,,; is
the number of trips on routee C,,, whered,, = Ziecn d,;. Variations in the total demand
levels can be enabled by adding one fictitious route to ev&np@ir that bypasses the physical
network.

The probability that a traveler in OD relatianchooses pathis denoted by, (i|d) whered =
(dn;). This probability is in general a function of all demand liswé because in equilibrium
conditions the route choice of a traveler depends on thearkteonditions, which in turn
depend on the route choice of all travelers in the systemh&faatically, the problem of finding
path demand levels that are self-consistent in this regaad$e expressed as the problem of
maximizing the prior entropy

1 Liee, (Pa(ild))®
w(d) =[] ! CHieCn ™

n=1

: (1)

which represents the probability that, for a given routeichonodelP, (i|d), a particular de-
mand patternl occurs in the system. AppendiXx A shows that the demand |&vatsnaximize
W (d) solve the route assignment problem = P, (i|d)d, for all n andi € C,,.



Given a sey of traffic counts that is observed on some or all links of thisvoek, the calibration
adjusts all path flows in a way such that the counts are repemtito a reasonable degree. For
this purpose, the posterior entropy

W(dly) < p(y|d)W(d) 2)

is maximized, where the likelihoog(y|d) is the probability of observing the measurements
y for given demand leveld. The posterior entropy models the probability distribotmf a
certain demand pattexhgiven both the route choice modg} (i|d) and the measuremengs
AppendixB shows thaitl’(d|y) is maximized by the posterior route choice probabilities

exp(An; + Tpi) Po(i]d)

P,(i|ld,y) = ] <
( ‘ ) Z]GC eXp(An] + Fn]) n(]‘d)
where
_ Olnp(yld)
Anz - adnz (4)
- dmj  OP,(j]d)
tni = mX:l j; P, ] |d Odn; ‘ (5)

That is, a demand calibration in the maximum posterior gytreense requires to scale the
choice probability of every routeof every OD paim by exp(A,,; + ') (@and to re-normalize).
A,,; captures the effect of the demadid on the log-likelihood, i.e., on the measurement repro-
duction.T,,; essentially describes how a changé inaffects all demand level$ (through the
network conditions).

Formally, this estimator can be immediately applied tolralie the plan choice of a disaggre-
gate agent population in a fully dynamic setting by assowgjahe indexn = 1... N with the
agents and’,, with the plan choice set of agent That is, the OD pairs are now replaced by
agents and the routes are replaced by plans.

Consistency with the large population assumption of theopgt maximization approach is
maintained by considering now a large numbeRaterations in the simulation. This implies
thatd,, = R becomes the total number of plan choices made by agduting R iterations and

d,; becomes the number of times agenthooses plam € C,,. That is,d represents as from
now the accumulated demand levels ofeiterations. While this approach is intuitively fairly
straightforward, it requires some further consideratiomsich are outlined in the following
section.



3.2 How does Cadyts solve the problem?

The previous section outlines the conceptual workings efdhlibration as an intuitive gen-
eralization of a mathematical specification. This sectimtusses the major conceptual and
algorithmic implications of this approach.

The idea of re-establishing the large population propeytpliserving the same agent during
many iterations of the simulation implies two assumptio(iy:The demand modeP, (:|d)
represents a stable average plan choice distribution ot agever these iterations, and (ii) this
choice distribution is a function only of the average demlamdls. Assumption (i) is consistent
with the inertia of most (if not all) DTA simulators presedtm the literature, which mirrors
the inertia of actual travelers’ decision making. Assuimipfii) implies an approximation: A
real traveler might very well evaluate distributional inftation about the network conditions
when selecting a plan. Average demand levels constitutg amlimperfect proxy for this
information. Note, however, that these are only internaliagptions of the calibration and that
the simulation is not required to fully comply with them fopeactical application.

An iterated microsimulation typically maintains some aaility in the network conditions even
when the transients of the iterations have ceased. Thighity results from the stochasticity
of both the supply and the demand simulator. For reasonsrogrinal stability, the\ coeffi-
cients in [(4) are calculated as average values in calib@ieditions. This constitutes a fixed
point problem in that thé coefficients depend on the demand levels, which in turn $eetat
by the calibration and hence by thecoefficients. Technically, this is realized by running
a recursive regression concurrently with the simulatiaat thacks a linear model of the log-
likelihood given the demand levels (Fl6tterdd and Biedg?009, accepted for presentation).
The coefficients of this model serve as approximations oflérevatives in[(#). Since the linear
model is updated in every single iteration, it implicitlyptares all correlations in the network
conditions that result from variability in the demand. Thigelevant because otherwise this
correlation would have to be additionally modeled in theliikood, which is originally speci-
fied in (2) to depend on a single demand realizatiamly.

The T" coefficients in[(5) require to calculate the sensitivitiésalb plan choice probabilities
with respect to all demand levels, where the coupling ofdlgsantities is given through the
simulated network conditions. These sensitivities arel harobtain for generic demand and
supply simulators, and therefore these coefficients anewtly set to zero in the calibration.
Essentially, this simplification is as good (or as bad) asragprtional assignment” in OD
matrix estimation, where fixed (i.e., insensitive) rout@ick behavior is assumed in every
single iteration of the calibration.

Once theA andT" coefficients are available, the modified plan choice distridn (3) can be
enforced in various ways, depending on the simulation.dfdimulator provides access to the



uncalibrated choice probabilities, these probabilitis be explicitly adjusted before a choice
is made. If the demand model is utility-driven, the utilgigf the plans can be modified such that
the desired posterior choice distribution results. If teendnd simulation operates completely
as a black box in that only realized choicex any agent: can be observed, rejection sampling
is applicable with an acceptance probability that is prapoal toexp(T';,, + A;,,) (Ross, 2006).

4  Applications

This section presents two applications of Cadyts. Firshestechnical preliminaries are given
in Subsectior_4]1. Second, Subsecfiod 4.2 describes howaltiwation is linked through
function calls with the MATSim microsimulator and preseatsexemplary result from a large
real-world case study. Third, Subsection]|4.3 describespafication of the calibration in
conjunction with the SUMO microsimulator that relies on e-flased communication between
the programs. For the latter application, only some verlipieary results can be given.

4.1 Technical decoupling of calibration and simulation

Cadyts is implemented in Java (Sun Microsystems, acce$¥¥l).2 Java structures software
into packages, which essentially are name spaces thatideiwith directories of the file sys-
tem. In order to customize the calibration for a particulamngation, some Java programming
is likely to become necessary, e.g., to account for the sitiaui-specific data and file formats.
However, the amount of programming is minimized throughphsvision of various default
classes for different interaction modes.

A major issue with the maintenance of software that is useditigrent groups is to ensure
stable interfaces to the users while enabling sufficierrial flexibility for future develop-
ments. Cadyts deals with this issue by assuming that a sepaterface package is set up for
every linked simulator. This package (i) accesses and lplgssxtends the pre-fabricated fa-
cilities of the basic calibration code and (ii) constituéesexclusive connection point between
calibration and simulation. Given that this package is dddghe Cadyts software repository,
all internal modifications (“refactorings”, Fowler (1999 the calibration code can be applied
consistently to the interface package, while the logic ediog to which this package connects
to the simulation remains unchanged. In the language ofjdgsitterns, the interface package
implements a “facade?” (Gamns al., 11994).



4.2 Calibration of MATSIm

MATSim (“Multi-Agent Transport Simulation Toolkit”) is artily disaggregate DTA microsim-
ulator in that it entirely discards the fairly typical OD matbased demand representation and
instead tracks the trip sequences of individual agentautiirout the the entire modeling pro-
cessl(MATSim, accessed 2009; Raney and Nagel, 2006). Tdtisréeallows to model how the
network conditions affect not only route choice but, at teagrinciple, arbitrary choice di-
mensions. The current implementation of MATSim equilibeaboth route and departure time
choice based on an all-day utility function that accountdiie cost of travel and the benefits
of performing activities (Charypar and Nagel, 2005). A siengueuing model is implemented
in the supply simulation (Cetiat al.,'2003).

Since both Cadyts and MATSim are implemented in Java, theyedinked through function
calls. For this purpose, a (pre-fabricated and not MAT Sjreesfic) rejection sampling facility
of Cadyts is utilized: Whenever an agent chooses a plamjitqees this plan to the calibration,
which either accepts or rejects the plan. If the plan is tephcthe agent draws again from
its plan choice distribution. Eventually, an accept occursich constitutes a draw from the
calibrated plan choice distribution. Essentially, thddweing three functions are called by
MATSIm:

voi d addMeasurenent (L link, int start_s, int end_s, double
val ue, doubl e stddev, Measurenent. TYPE type)

This function is called once for every measurement befoeestmulation starts. It registers
a measurement of a certairype (currently, there are only traffic counts), which has been
observed on a certaln nk betweerst art _s andend_s seconds of the day. The measured
val ue and its standard deviatiat ddev are also provided. The generic network link type

is in internally substituted by the MATSim link type.

bool ean get Sanpl er (Obj ect agent).i sAccept ed( Pl an<L> pl an)

Whenever aragent chooses @l an, it asks the calibration through this function if the plan
is accepted or if another plan needs to be generated. Theatan guarantees that an accept
occurs after a pre-specified maximum number of rejectiongevelt the same time making a
best effort to comply as far as possible with the calibratediae distribution[(B). In every
iteration, every agent makes as many function calls of #pe &s it is necessary to obtain an
accepted plan.



Figure 1: Zurich network
The analysis zone of the MATSim test case comprises the magat network of the city of Zurich,
which is enlarged (Grethet all,[2008).

voi d after Net wor kLoadi ng( Si mResul t s<L> si nResul ts)

This function is called once after each network loading. dsg®es a container object to the
calibration that provides information about the resultshaf most recent network loading, in
particular about the simulated flows at the measurementitorsa Although a pre-fabricated
implementation of theSi mResul t s<L> interface is available, MATSIim uses a proprietary
implementation for greater efficiency.

MATSIim has by now been successfully calibrated in one lasgd-world scenario, where
both route and departure time choice are concurrently sjusom time-dependent traffic
counts at 159 sensor locations for a population of 187 48#tagen a 60492 link network
(Flotterodet al., 12009, accepted for presentation). For illustration, Feglishows the network
of this application, and Figuié 2 exemplifies how the loglikood of the sensor data changes
over the iterations. The calibrated simulation stabilafer a few hundred iterations, which is
in the same order of magnitude as a plain simulation that doeaccount for the sensor data.
Also, the duration of a single iteration is less than doulilgdhe calibration’s computational
overhead that mainly results from the rejection sampling.

The experiment starts from equilibrated network condgisach that all improvements in the
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Figure 2: MATSim results

Evolution of the log-likelihood (scaled by the number of me@ments) over the iterations. The calibra-
tion starts from equilibrated network conditions such tdbimprovements in the log-likelihood can be
assigned to the calibration. The jump-like stabilizatifteraiteration 200 results from a switch in MAT-
Sim’s replanning logic, which excludes certain choice disiens in order to improve the simulation’s
convergence.

log-likelihood can be assigned to the calibration. Theiahibg-likelihood (normalized by
the number of measurements) is -51.9 and its final value #itesubetween -11 and -10. It
would become zero if all measurements were perfectly remred. This shows that Cadyts
improves the measurement fit substantially, but it does agtagsything about the extrapo-
lation quality beyond the sensor locations or about how #ldm@tion can be used to iden-
tify the parameters of the plan choice model. These itemslm@issed in_Flotterdet al.
(2009, accepted for presentation).

4.3 Calibration of SUMO

SUMO (“Simulation of Urban Mobility”) is a trip-based DTA miosimulator ((SUMO,
accessed 2009). It takes time-dependent OD matrices atsiapd disaggregates them into
individual vehicles before evaluating the network perfante through a detailed traffic flow
microsimulator. The iterative feedback loop only adjusiste choice. Both the demand simu-
lator and the supply simulator of SUMO are implemented in CFhe iterative simulation is
enabled through a Python script that alternately call eantlaitomponent. The data exchange
among the modules is realized through files.

Cadyts provides extensive facilities for the file-base@rnattion with a simulation. These
classes are configured with implementations of some irdesféor the reading and writing of
the SUMO file formats. An executable jar file is generated fithie code, and the follow-
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ing three calls to the jar file are implemented in SUMO’s Pyitisoript (some command line
parameters are left out for clarity):

java -jar SunoController.jar INIT -neasfile nmeas. xm

Everything before thé NI T keyword is just a call to the pre-compiled java prograiniNl T
indicates that this call initializes the calibration. Theeasf i | e keyword is followed by the
file in which the traffic counts are stored. This call is madeeowhen the simulation is started.

java -jar SunoController.jar CHO CE -choi cesetfile
choi cesets. xm -choicefile choices. xm

The CHO CE keyword indicates that the calibration is expected to gateeralibrated choices
for every trip maker in the simulation and to write these cheiin the file preceded by the
-choi cefi | e keyword. For this, the calibration is provided with both ttfeice sets and
the prior choice probabilities of all trip makers in the fi@léwing the- choi cesetfil e
keyword. This call is made once in every iteration of the datian.

java -jar SunoController.jar UPDATE -netfile flows. xm

The UPDATE keyword tells the calibration that new simulated networkditons from the
most recent run of the traffic flow simulation are availabléhiafile following the- netfi |l e
keyword. This call is made once in every iteration of the datian.

Being limited to route choice based on OD matrices, SUMO daa be calibrated only in
these regards. The basic application of a mere route chdjastenent given fixed total demand
levels has by now successfully been tested. The joint @idor of OD flows and route choice
is currently being implemented, where a fixed maximum dentewvel per OD pair is assumed
and every trip-makers is provided with one additional nogtalternative that (i) represents the
decision of not making a trip at all and (ii) has a prior chgizebability that guarantees that
the number of a priori made trips is consistent with the ubcalled OD matrix.

The calibration of SUMO is a recent venture, and only venjimieary results are available.
Figure[3 shows the simple test network that is used to valitta¢ technical correctness of
the interactions between SUMO and Cadyts. Vehicles enéen¢ttwork at D1 or D2, choose
one of the 4 possible routes through the network, and lease 3. Figurd 4 gives some
exemplary log-likelihood trajectories that result wheniregke flow sensor is located on link
L9 and the standard deviation of the according measurerserdried. As the standard de-
viation decreases, the measurement fit improves. If notbisg, this shows that simulation
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Figure 3: SUMO network
A synthetic network for testing purposes. Vehicles entersystem at D1 and D2, and they leave at D3.

normalized log-likelihood

A
0+ oc=25
o=10
—-0.2 +
o =20
—0.4 + 0 =00
—0.6 +
—0.8 iteration
-1 : : : : —
0 10 20 30 40 50

Figure 4: SUMO results

Some exemplary log-likelihood curves for a single sensdirdnlL9 of the network shown in Figuie 3.
The higher the belief in the measurement (lower standarétlen o, in vehicles per hour), the better
its reproduction: A zero log-likelihood indicates a petfegproduction of the measurement. For better
comparability, all curves are scaled to begin at the valususione.

and calibration interact in a meaningful way. Computatilynthe overhead introduced by the
calibration is very low because SUMO communicates its rcut@ce probabilities such that
no rejection sampling is necessary.
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5 Summary and outlook

This article demonstrates that it is possible to calibratedemand of a DTA microsimulation
from traffic counts without resorting to the usual aggrematiin terms of OD matrices or path
flows. The theoretical underpinnings of the proposed catiibn approach are outlined, and
its implementation in the freely available software paek@adyts is described. The system’s
flexibility is demonstrated through exemplary applicatida two different DTA microsimula-
tors.

Future work will cover both methodological and technicglexgs of the calibration. Method-
ologically, a major and yet unresolved challenge is the eratitically consistent incorporation
of the equilibrium-related interactions of different aggmplan choices (captured through the
I" coefficients in[(b), which are set to zero in the current immatation). Beyond this, some
means to calibrate a supply simulator jointly with the dechaimulator would certainly im-
prove the overall calibration quality. Technically, thésea vast number of thinkable add-ons
that would improve the convenience of using the tool. Finalew challenges are likely to be
identified through new applications of Cadyts to furtherdation systems.
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A Maximization of prior entropy

Denote byd,, the total demand level of OD pairand byd,,; the demand level of pathe C,,.
The prior entropy of the global demand pattére- (d,.;) is

wd) =]] (Z dm.> !Hie%i(;t(;ff) (6)
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Taking the logarithm and applying Stirling’s approximatitn X! — X In X — X for large
X),

mW(d) = > | du-InD dy

n=1 iECn iECn
+> dpiln Py(ild) = > dyilndy | - (7)
i€Chp, 1€Chp

The derivative of/'(d) with respect tal,,,; (wherem is an OD pair ang € C,,) is

dln W (d) dm n(i]d)

— —Ind,+n . (8)
i, ; 2 Bl i,

A substitution of the equilibrium flow pattew,; = P,(i|d)d,, yields

OlnW(d) (z]d)

) —Ind, —Ind, + > d, =0, (9)
0d,;j ; = admj

where the sum over all choice probability derivatives of dagnand segmentis zero because
the probabilities themselves must sum up one.

B Maximization of posterior entropy

Before maximizing (the logarithm of) the posterior entrdpgction

W(dly) « p(y|d)W(d), (10)

the additional requirement of constant demand ledglper OD pairn is introduced in the
Lagrangian

ieChp

Using (8), the derivative oL (d|y) with respect tal,,,; (wherem is an OD pair and € C,,)
becomes

OL(dly)  0lnp(y|d) j\d = czn P, (i|d)
= | 1 . 12

n=1 i€

14



Setting this to zero and solving fd,; yields

dinj = dm exp(Up) exp(Amj + Lij) Pn(j]d) (13)
where
dlnp(y|d)
L olplyld) 14
™ 0d,,; o
N .
Ty = : '
" ;; By(ild) - Oy +

The Lagrange multipliers result from a substitution[ofl (&8Y,,, = > ... dn: such that

1
exp(um) = S o (A o) Blild) (16)
Inserting this in[(IB) finally results in the posterior chofrobabilities
Paljld,y) = 2 o Ot T P 1E) a7)

A Dicey, XP(Api + Do) P (ild)
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