Structural estimation for route choice models considering link specificity of measurement error variances

Yuki Oyama*, Eiji Hato

*oymyk.dom@gmail.com

Department of Architecture and Building Engineering School of Environment and Society Tokyo Institute of Technology

June 22, 2017

Outline

- 1. Introduction
- 2. Methodology :
 - Sequential link measurement model
 - Structural estimation method
- 3. Numerical experiments :
 - Simulation data
 - Real pedestrian GPS data

4. Conclusions

Introduction

Measurement uncertainty

- Dense network
- Spatial heterogeneity of Measurement errors
 - Along river \checkmark
 - Wide street
 - Narrow street
 - With arcade

Literature review

Bayesian approach [e.g., Danalet et al., 2014; Chen et al., 2015]

$$p(r|\hat{m}_{1:J};\sigma,\bar{\theta}) \propto p(\hat{m}_{1:J}|r;\sigma)p(r|\mathcal{R};\bar{\theta})$$

 $p(\hat{m}_{1:J}|r;\sigma)$: Measurement equation

 $p(r|\mathcal{R}; heta)$: Route choice model (prior information)

Joint estimation [Bierlaire and Frejinger, 2008]

$$p(\hat{m}_{1:J}; \bar{\sigma}, \theta) = \sum_{r \in \mathcal{R}} \underline{p(\hat{m}_{1:J} | r; \bar{\sigma}) p(r | \mathcal{R}; \theta)}$$

 ${\cal R}~$: Path candidate set defined by $~\sigma$

Objective

Problem definition & notations

1. Network

- $\mathcal{G} = (\mathcal{N}, \mathcal{A})$: Network graph
- $i \in \mathcal{N}$: Node (coordinates: $x_i = \{x_{i|at}, x_{i|on}\}$)
- $a \in \mathcal{A}$: Link (up/down nodes: (u_a, d_a) , attributes: y_a)

2. Route choice behavior

Sequential link choices (a Markovian route choice model)

3. Observation

- $\hat{m} = (\hat{x}, \hat{ au})$: GPS measurement (coordinates, timestamp)
- $p(\hat{x}|x;\sigma)$: Probability distribution of GPS measurement error
- $\sigma = \sigma_a$: Variance assumed to be *link-specific* and *estimated*

Identification of link-specific variance σ_a

Sequential link measurement

Methodology Sequential link measurement mode

Sequential link measurement

Sequential link measurement

Estimation of the variance

- $p(\mathbf{m}|a)$: Measurement equation
- p(a'|a) : Markovian route choice model
- ${ ilde a}$: Inferred link
- $\mathcal{A}(a)$: Set of subsequent links of a

Measurement equation

Giving probability that $\hat{\mathbf{m}}^t$ is observed if a_t is the true link

Measurement equation

$$\begin{split} \underline{p(\hat{m}_{1}^{t},...,\hat{m}_{J}^{t}|a_{t};\sigma_{a_{t}})} &= p(\hat{x}_{1}^{t},...,\hat{x}_{J}^{t}|a_{t};\sigma_{a_{t}}) & \text{Timestamp has no error} \\ &= \prod_{j=1}^{J} p(\hat{x}_{j}^{t}|a_{t};\sigma_{a_{t}}) & \text{Probabilities are independent} \\ &= \prod_{j=1}^{J} \int_{x_{j}\in a_{t}} p(\hat{x}_{j}^{t}|x_{j},a_{t};\sigma_{a_{t}}) p(x_{j}|a_{t})dx_{j} \end{split}$$

Rayleigh distribution [van Diggelen, 2007]

$$p(\hat{x}_{j}^{t}|x_{j}, a_{t}; \sigma_{a_{t}}) = \frac{\|\hat{x}_{j}^{t} - x_{j}\|}{\sigma_{a_{t}}^{2}} \exp\left(-\frac{\|\hat{x}_{j}^{t} - x_{j}\|^{2}}{2\sigma_{a_{t}}^{2}}\right)$$

Identifying links

$$\begin{aligned} & \text{Maximizing posterior probability} \\ & a_t = \arg \max_{a_t \in \mathcal{A}(a_{t-1})} \underline{p(a_t | \hat{\mathbf{m}}^t, a_{t-1})} = \frac{\underline{p(\hat{\mathbf{m}}^t | a_t; \sigma_{a_t}) p(a_t | a_{t-1}; \theta)}}{\sum_{a_t \in \mathcal{A}(a_{t-1})} \underline{p(\hat{\mathbf{m}}^t | a_t; \sigma_{a_t}) p(a_t | a_{t-1}; \theta)}}. \end{aligned}$$
By repeating until t=T, we obtain a path: $\tilde{r} = [a_1, ..., a_t, ..., a_T]$

Methodology Structural estimation

Estimation of route choice model

Structural estimation

Numerical experiment

*(continuous cost: CC_a / discrete cost: DC_a / variance: σ_a)

Examples:

1. Sampling paths

Model:

$$p(a|k) = \frac{\exp(u(a|k))}{\sum_{a \in \mathcal{A}(k)} \exp(u(a|k))}$$

 $u(a|k) = \theta_1 TT_a + \theta_2 CC_a + \theta_3 DC_a + \theta_4 UT_{a|k}$

True parameter:
$$\bar{\theta} = [-0.1, -2, -1.5, -4]$$

2. Sampling trajectories

Time discretization: s = 30sec. Sampling interval: $\hat{\tau}_j - \hat{\tau}_{j-1} = 10$ sec. Distribution: $\hat{x} - x \sim N(0, \sigma_a)$ $\hat{y} - y \sim N(0, \sigma_a)$

Result | link measurement accuracy

- Estimating variance refines the measurement accuracy
- The effect of incorporating route choice models is **largely dependent on the initial parameter**

			Link accuracy(%)		Ave. $ \tilde{\sigma}_a - \sigma_a^* $	
Model	σ	heta	-	Switching	-	Switching
1	Given	[0,0,0,0]	54.57	68.86	-	-
2	Estimated	[0,0,0,0]	76.86	82.86	5.848	4.40
3	Estimated	[-1.5, -0.1, -2, -10]	4.86	38.29	41.99	21.21
4	Estimated	[-0.1, -2, -1.5, -4]	76.86	91.71	7.58	4.06

 $^{*}\theta = [0, 0, 0, 0]$: no prior route choice information

Result | structural estimation

- Structural estimation reduces biases in estimated parameters and gives estimates close to the true values (total diff.: 3.643 vs. 1.244)
- Convergence values are equivalent regardless of the initial values, which are examined by the following settings:

 $\bar{\theta} = [-0.1, -2, -1.5, -4], [-10, -10, -10, -10], [-100, 0, 0, 0], [-100, -100, -100, -100], [10, 10, 10, 10]$

		One-way		Structural Estimation				
	TRUE	Estimates	abs(diff.*)	t-value	Estimates	abs(diff.)	t-value	
θ_1	-0.1	0.002	0.102	0.101	-0.064	0.036	-2.562	
θ_2	-2	-0.755	1.245	-4.164	-1.727	0.273	-6.882	
θ_3	-1.5	-1.312	0.188	-4.772	-1.046	0.454	-3.519	
$ heta_4$	-4	-1.892	2.108	-8.864	-3.519	0.481	-9.739	
total error	r		3.643			1.244		
sample			-	350			350	
L0				-373.221			-371.887	
LL				-269.872			-211.308	
$ ho^2$				0.266			0.421	
iteration							6	

Input: $\bar{\theta} = [0, 0, 0, 0]$ (No information)

Result | convergence process

• Less vibration, and small number of iteration in any cases

Case study

GPS data

- Matsuyama city, Japan
- Pedestrian trip in the city center
- Randomly sampled 30 walking trips

Specification

$$v(a|k) = \theta_1 T T_a + \theta_2 C U_a + \theta_3 D U_a + \theta_4 U T_{a|k}$$

TT : Travel time [min.] DU : Arcade dummy variable

CU : Sidewalk width [m] UT

UT : U-turn dummy variable

Numerical experiment Case study

Estimation result of route choice model

- <u>Travel time (θ_1) seems to be significant</u> from the result of **one-way model**, however, ٠
- **Structural estimation** result shows that links with arcade (θ_3) are the most likely to be ٠ passed by pedestrians; travel time (θ_1) is not significant
- Other t-values and rho-square (ρ^2) indicate that the *structural estimation* improves ٠ parameter estimation results

		2		1	
		One-way		Structural H	Estimation
		Estimates	t-value	Estimates	t-value
Travel time (min.)	$ heta_1$	-0.007	-2.473	-0.001	-0.428
idewalk width (m)	$ heta_2$	0.088	1.497	0.134	1.582
With arcade	$ heta_3$	-0.004	-0.011	2.760	4.288
U-turn	$ heta_4$	0.774	0.532	0.469	3.344
	sample		270		270
	L0		-307.608		-309.066
	LL		-302.174		-225.162
	$ ho^2$		0.005		0.259
	iteration				11

Input: $\tilde{\theta} = [0, 0, 0, 0]$ (No information)

Sidewalk

Conclusion

Contributions

- Sequential link measurement model
 - Estimating *link-specific variance* of GPS measurement error
- Structural estimation
 - **Reducing biases** caused from the initial parameter settings
- Validation
 - Structural estimation achieves to *refine the results* and *quickly* converge.
- Application
 - The methods are effective in a real pedestrian network and bring hidden preferences to light.

Future work

Joint estimation

$$p(\hat{m}_{1:T};\sigma,\theta) = \sum_{a_{1:T}\in\mathcal{R}} p(\hat{m}_{1:T}|a_{1:T};\sigma) p(a_{1:T};\theta)$$

- Algorithm for preserving path-based measurement probabilities
 - Generating path candidates by re-sampling at each time using probabilities

- Estimation method for reducing computational burden
 - EM algorithm, variational Bayes method

Thank you for attention.

Link switching

Difficulties regarding link connectivity because of myopic optimization

Link switching

Result | structural estimation

Table:

Average and standard deviation of estimated parameters, the number of iterations and computational time of 100 structural estimations

	$ ilde{ heta}_1$	$ ilde{ heta}_2$	$ ilde{ heta}_3$	$ ilde{ heta}_4$	Iteration	CPU time (s)
Ave.	-0.112	-1.140	-1.006	-2.916	4.086	858.179
Std.	0.023	0.663	0.413	4.006	1.007	229.737

*True parameter: $\bar{\theta} = [-0.1, -2, -1.5, -4]$