Using non-traditional data sources to understand travel behavior

Virginie Lurkin

Laurie A. Garrow

Transport and Mobility Laboratory (TRANSP-OR), École Polytechnique Fédérale de Lausanne (EPFL)

12th Workshop on Discrete Choice Models June 22-24, 2017

Research objectives

Survey of air travelers

Results

Conclusion

Research objectives

Survey of air travelers

Results

Conclusion

what feels like End is often the Beginning

Modeling in Air Transportation: Cargo Loading and Itinerary Choice

Itinerary choice model

Factors influencing itinerary choice

The fundamental problem

 $\textit{demand} = \beta \times \textit{price} + \ldots + \varepsilon$

Price endogeneity

Contributions

Main contributions:

- Estimate a baseline MNL model that controls for price endogeneity for high-yield and low-yield fare products using the control-function method
- Estimate more advanced DCM based on the GEV family that capture complex product substitution patterns

Contributions

Main contributions:

- Estimate a baseline MNL model that controls for price endogeneity for high-yield and low-yield fare products using the control-function method
- Estimate more advanced DCM based on the GEV family that capture complex product substitution patterns

Main conclusions:

- Importance to correct for price endogeneity
 - Over-estimation of customer's value of time and biased price elasticities

Strong correlation across itineraries that share similar departure times

Construct choice sets for each OD city pair that departs on day of week d

Construct choice sets for each OD city pair that departs on day of week d

		C	hoice se	ts
Segment	Choice	Min	Mean	Max
	sets	Alts	Alts	Alts
Same TZ, distance \leq 600 miles	30,943	2	10.8	95
Same TZ, distance $>$ 600 miles	22,861	2	14.3	105
One TZ WB, distance \leq 600 miles	5,617	2	10.6	64
One TZ WB, distance $>$ 600 miles	24,82	2	15.1	127
One TZ EB, distance \leq 600 miles	5,630	2	10.3	63
One TZ EB, distance $>$ 600 miles.	25,062	2	14.5	137
Two TZ WB	11,505	2	17.1	133
Two TZ EB	11,267	2	15.3	93
Three TZ WB	6,732	2	21.3	156
Three TZ WB	6,619	2	19.2	138

Key: TZ = Time Zone, WB = Westbound, EB = Eastbound

Construct choice sets for each OD city pair that departs on day of week d

		C	hoice se	ts
Segment	Choice	Min	Mean	Max
	sets	Alts	Alts	Alts
Same TZ, distance \leq 600 miles	30,943	2	10.8	95
Same TZ, distance $>$ 600 miles	22,861	2	14.3	105
One TZ WB, distance \leq 600 miles	5,617	2	10.6	64
One TZ WB, distance $>$ 600 miles	24,82	2	15.1	127
One TZ EB, distance \leq 600 miles	5,630	2	10.3	63
One TZ EB, distance $>$ 600 miles.	25,062	2	14.5	137
Two TZ WB	11,505	2	17.1	133
Two TZ EB	11,267	2	15.3	93
Three TZ WB	6,732	2	21.3	156
Three TZ WB	6,619	2	19.2	138

Key: TZ = Time Zone, WB = Westbound, EB = Eastbound

Research objectives

Survey of air travelers

Results

Conclusion

Ultimate objective

Develop a choice set generation model for itinerary choice models that incorporates sorting and filtering actions using an interactive online survey

Intermediate objective

Determine if lower-cost crowdsourcing worksites, such as Amazon Mechanical Turk provide similar results as more traditional survey panels

Research objectives

Survey of air travelers

Results

Conclusion

Survey of air travelers

Lurkin, Garrow

Online survey

Background Questions

Georgia Institute of Technology

- 4. How long before your trip did you purchase your ticket?
 - Zero to three days before
 - Four to six days before
 - One to two weeks before
 - Two to three weeks before
 - One month before
 - ◯ Two months before
 - Three or more months before

5. At what airport did you begin the outbound air portion of your trip? Enter the airport by typing the city, airport name or airport code in the box below. Then select the airport from the menu. If your airport is not one of the options, just leave its name and city name in the box.

My air trip began at:		

6. At what airport did you conclude the outbound air portion of your trip? Please do not include any connecting airports you may have passed through during the air portion of your trip. Enter the airport by typing the city, airport name or airport code in the box below. Then select the airport from the menu. If your airport is not one of the options, use I leave its name and city name in the box.

My air trip ended at:			

Online survey

Online Searc	ch and Purch	nase				Georgialnstitute of Technology
Stops Check All	Sort By: Sort f	he flights here	~			What should I do now?
Non-stop only		Southwest			Travel Time: 2h 40m	
✓ 1 Stop only		MCI			МСО	Select
✓ 2 Stops only	\$199	8:00AM			11:40AM	
Airlines Check All		American			Travel Time: 5h 40m	
Alaska only	AA	MCI		DFW	мсо	Select
American only	\$168	7:40AM		1h 25m	2:20PM	
Delta only		Delta			Travel Time: 4h 57m	
Frontier only		MCI		ATL	МСО	Select
JetBlue only	\$180	12:30PM		1h 21m	6:27PM	
Southwest only		Southwest			Travel Time: 6h 55m	
Spirit only		мсі		ATL	мсо	Select
United only	\$182	6:30AM		3h 20m	2:25PM	
Virgin only	**	American			Travel Time: 7h 20m	
	AXA	МСІ		DFW	МСО	Select
Apply Filter	\$200	6:00AM		3h 5m	2:20PM	

Data - AMT or Qualtrics?

1. Amazon Mechanical Turk (AMT) is an online outsourcing platform with more than 500,000 workers in 190+ countries that perform microtasks, typically for \$0.10 USD or less

2. Qualtrics is a more traditional marketing firm that maintains a panel of respondents that complete surveys for a variety of clients

Amazon Mechanical Turk

	AMT	Qualtrics		
Number of respondents*	690	553		
-High yield respondents	62	62		
-Low yield respondents	628	491		
Data collection period	Oct-Nov 2016	March 2017		
Total survey cost	\$305.25	\$3,835		
Participant reimburgement	\$0.25 regular workers	\$0.6F		
	\$1.00 master workers	D 0.00		
¥ C. I Y				

*after cleaning

Google Scholar Search of "Mechanical Turk"

AMT >< Qualtrics

- 1. Use Chi-Square test of homogeneity to determine if survey respondents and their responses to individual questions are similar
- 2. Estimate itinerary choice models from AMT and Qualtrics data and determine if results are similar

*H*₀: AMT and Qualtrics respondents are homogeneous with respect to the proposed categories

*H*₀: AMT and Qualtrics respondents are homogeneous with respect to the proposed categories

$$\chi^2$$
 statistic $=\sum_{i=1}^r \sum_{j=1}^c rac{(O_{ij}-E_{ij})^2}{E_{ij}}$, where

 O_{ij} is the **observed** frequency for category *i* and population *j* E_{ij} is the **expected** frequency for category *i* and population *j*

*H*₀: AMT and Qualtrics respondents are homogeneous with respect to the proposed categories

$$\chi^2$$
 statistic $=\sum_{i=1}^r \sum_{j=1}^c rac{({\cal O}_{ij}-E_{ij})^2}{E_{ij}}$, where

 O_{ij} is the **observed** frequency for category *i* and population *j* E_{ii} is the **expected** frequency for category *i* and population *j*

Categorical question	AMT	Qualtrics	All
category ₁	<i>O</i> ₁₁	<i>O</i> ₁₂	<i>c</i> ₁
category ₂	<i>O</i> ₂₁	O ₂₂	<i>c</i> ₂
category _r	<i>O</i> _{r1}	O _{r2}	Cr
	<i>n</i> ₁	<i>n</i> ₂	n

*H*₀: AMT and Qualtrics respondents are homogeneous with respect to the proposed categories

$$\chi^2$$
 statistic $=\sum_{i=1}^r \sum_{j=1}^c rac{(O_{ij}-E_{ij})^2}{E_{ij}}$, where

 O_{ij} is the **observed** frequency for category *i* and population *j* E_{ij} is the **expected** frequency for category *i* and population *j*

Categorical question	AMT	Qualtrics	All
category ₁	<i>O</i> ₁₁	<i>O</i> ₁₂	c_1
category ₂	<i>O</i> ₂₁	O ₂₂	<i>c</i> ₂
category _r	<i>O</i> _{r1}	O _{r2}	Cr
	<i>n</i> ₁	<i>n</i> ₂	n

$$E_{ij} = \frac{c_i \times n_j}{n}$$

*H*₀: AMT and Qualtrics respondents are homogeneous with respect to the proposed categories

$$\chi^2$$
 statistic $=\sum_{i=1}^r \sum_{j=1}^c rac{({\cal O}_{ij}-E_{ij})^2}{E_{ij}}$, where

 O_{ij} is the **observed** frequency for category *i* and population *j* E_{ij} is the **expected** frequency for category *i* and population *j*

Categorical question	AMT	Qualtrics	All
$category_1$	<i>O</i> ₁₁	<i>O</i> ₁₂	<i>c</i> ₁
category ₂	<i>O</i> ₂₁	O ₂₂	<i>c</i> ₂
category _r	<i>O</i> _{r1}	O _{r2}	Cr
	<i>n</i> ₁	<i>n</i> ₂	n

$$E_{ij} = \frac{c_i \times n_j}{n}$$

Reject H_0 if χ^2 statistic $> \chi^2_{lpha,df}$, where df = (r-1) imes (2-1)

Overview

Motivation

Research objectives

Survey of air travelers

Results

Conclusion

Audience poll

Who thinks AMT and Qualtrics respondents have statistically equivalent trip characteristics ?

(1) I paid, personally (2) My company paid or reimbursed me

$$\chi^2 \; {\rm statistic} = 2.5 < \chi^2_{\rm 0.05,3} = 3.8 \rightarrow {\rm not} \; {\rm reject} \; {\cal H}_{\rm 0}$$

(1) Monday (2) Tuesday (3) Wednesday (4) Thursday (5) Friday (6) Saturday (7) Sunday (8) Don't remember but a weekday (9) Don't remember but a weekend

$$\chi^2$$
 statistic = 10.0 $<\chi^2_{\rm 0.05,3} = 15.5 \rightarrow$ not reject ${\it H}_0$

(1) 0 night (2) 1 night (3) 2 nights (4) 3 nights (5) 4 nights (6) 5 nights (7) 6 nights (8) 7 nights (9) 8-14 nights (10) 15-20 nights (11) 3 weeks or more

$$\chi^2$$
 statistic = 13.6 $<\chi^2_{\rm 0.05,3} = 18.3 \rightarrow$ not reject H_0

(1) Basic economy (2) Premium economy (3) Business (4) First class

$$\chi^2 \text{ statistic} = 13.7 > \chi^2_{0.05,3} = 7.8 \rightarrow \textbf{reject} \ H_0$$

How many associates, friends, or family members travelled together?

Who thinks AMT and Qualtrics respondents have statistically equivalent airline memberships and itinerary preferences?

Categorical question	Conclusion
Please indicate the airlines that you have	not reject H_0
previously flown on?	
I only fly certain airlines	reject H ₀
I generally shop for the cheapest flights	reject H ₀
and do not consider other factors	
I avoid small propeller and regional jet air-	reject H ₀
craft	
Travel times are more important to me	reject H ₀
than price	
Travel times are more important to me	reject H ₀
than the carrier	
Price is more important to me than carrier	reject H ₀

Who thinks AMT and Qualtrics respondents have statistically equivalent sociodemographic characteristics?

AMT respondents are younger, lower-income, and more likely to live alone than Qualtrics

Suggests that **weighted sampling approaches** that weight as a function of socio-demographic characteristics (income, age) may provide similar results with respect to itinerary-choice model estimation

MNL Model - Model 1: Restricted Model

Variables	Estimates (t-stat)
American MTurk	-0.322 (-2.1)
Delta MTurk	-0.624 (-3.9)
United MTurk	-0.904 (-5.0)
American Qualtrics	-0.475 (-2.6)
Delta Qualtrics	-0.740 (-3.9)
United Qualtrics	-0.161 (-0.8)
Other (ref.)	0
Morning 12:00 AM-9:59 AM (ref.)	0
Afternoon 10 AM-3:59 PM	-0.324 (-4.7)
Evening 4 PM-11:59 PM	-0.895 (-9.5)
Elapsed Time	-0.008 (-10.3)
Number of Connections	-1.489 (-10.7)
Price	-0.017 (-20.9)
LL(0)	-3481.15
LL(model)	-2846.13
$ ho_0^2$	0.182
VOT (\$/hr)	26,49

MNL Model - Model 2: Departure Time

Variables	Estimates (t-stat)
Morning 12:00 AM-9:59 AM (ref.)	0
Afternoon MTurk 10 AM-3:59 PM	-0.234 (-2.5)
Afternoon Qualtrics 10 AM-3:59 PM	-0.438 (-4.2)
Evening MTurk 4 PM-11:59 PM	-0.773 (-6.2)
Evening Qualtrics 4 PM-11:59 PM	-1.058 (-7.2)
LL(0)	-3481.15
LL(model)	-2844.48
$ ho_0^2$	0.183
VOT (\$/hr)	26.59

Likelihood ratio statistic:

-2(LL_R - LL_U) = 3.3 <
$$\chi^2_{0.05,2}$$
 = 5.99 $ightarrow$ not reject H_0

MNL Model - Model 3: Number of connections

Variables	Estimates (t-stat)
Number of connections Mturk	-1.600 (-9.5)
Number of connections Qualtrics	-1.365 (-7.9)
LL(0)	-3481.15
LL(model)	-2845.42
ρ_0^2	0.183
VOT (\$/hr)	26.34

Likelihood ratio statistic:

-2(LL_R - LL_U) = 1.4 < $\chi^2_{0.05,1} = 3.84 \rightarrow$ not reject ${\it H}_0$

MNL Model - Model 4: Elapsed Time

Variables	Estimates (t-stat)
Elapsed Time Mturk	-0.009 (-9.7)
Elapsed Time Qualtrics	-0.006 (-6.8)
LL(0)	-3481.15
LL(model)	-2843.85
$ ho_0^2$	0.183
VOT Mturk (\$/hr)	29.96
VOT Qualtrics (\$/hr)	22.03

Likelihood ratio statistic:

-2(LL_R - LL_U) = 4.6 > $\chi^2_{0.05,1} = 3.84
ightarrow$ reject H_0

MNL Model - Model 5: Price

Variables	Estimates (t-stat)
Price Mturk	-0.019 (-17.3)
Price Qualtrics	-0.015 (-13.0)
LL(0)	-3481.15
LL(model)	-2843.47
$ ho_0^2$	0.183
VOT Mturk (\$/hr)	24.21
VOT Qualtrics (\$/hr)	29.83

Likelihood ratio statistic:

-2(LL_R - LL_U) = 5.3 > $\chi^2_{0.05,1} =$ 3.84 ightarrow reject H_0

MNL Model - Model 6: Elapsed Time and Price

Variables	Estimates (t-stat)
Elapsed Time Mturk	-0.009 (-9.9)
Elapsed Time Qualtrics	-0.006 (-6.0)
Price Mturk	-0.019 (-17.3)
Price Qualtrics	-0.014 (-12.1)
LL(0)	-3481.15
LL(model)	-2838.69
$ ho_0^2$	0.185
VOT Mturk (\$/hr)	28.06
VOT Qualtrics (\$/hr)	23.62

Likelihood ratio statistic:

-2(LL_R - LL_U) = 14.9 > $\chi^2_{0.05,2} = 5.99
ightarrow$ reject H_0

- Compare these results to the ones obtained using revealed preference data (my PhD thesis)
- Determine if unweighted estimation lead to similar results
- Analyze if AMT and Qualtrics respondents have the same behavior regarding the use of search and filter tools
- Develop a choice set generation model and compare results for AMT and Qualtrics

