Models of Friendship Formation for the Generation of Synthetic Social Networks

Thibaut Dubernet, Kay W. Axhausen

Institute for Transport Planning and Systems (IVT) ETH Zurich

DCM Workshop — EPFL, Lausanne — April 2016

Inspiration for the Current Model

New Model

What this Presentation is

- Presentation of Work In Progress
- Development of models of friendship formation
- Aim: generating social networks
- Based on previous work by Matthias Kowald and Theo Arentze
- Criticism Welcome!
 - Probability that I missed some important detail significantly different from 0

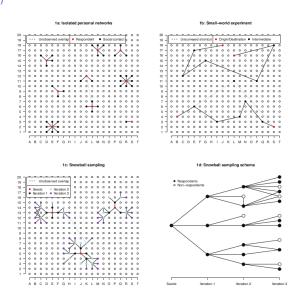
- Social contacts and their distribution assumed to have important impact on where leisure activities are performed
- ▶ If it is the case, social network data might help in forecasting
- Important characteristic of social networks:
 - Spatial distribution of social contacts
 - Homophily
 - Degree distribution
 - Transitivity/Clustering
- Generating synthetic social networks:
 - Reproduce important characteristics
 - Be computationally scalable
 - aim: generate network for synthetic Swiss population

A Word on the Data

- Vocabulary:
 - ▶ ego: person of interest
 - alter: (potential) friend of an ego
 - ▶ tie: existence of a relationship of interest
 - ▶ social network: graph where nodes are egos and edges are ties
 - ego-centric network: graph composed by one ego and its alters
 - clustering: proportion of possible triangle that are closed
 - "friends of friends that are friends"
- Assume we have a way to reveal (sub) network
- Static view
- ▶ In our case: snowball sample
 - Focus on leisure contacts
 - ▶ assumption: all relevant ties are reported (not in the dataset ⇒ not in the real world)

Snowball Sampling

Source: Kowald (2013)



Inspiration for the Current Model

New Model

Inspiration: T. Arentze et Al. 2013

- Estimated on the Zurich Snowball Data
- Designed for the same purpose as here
- Only tested for a small synthetic population
- Requires calibration

Idea

- Associate a random utility to each potential tie
- The probability for a friendship to exist is the probability that this utility is higher than a fixed threshold

$$P(ij) = P(U_{ij} + \varepsilon_{ij} > u_0)$$

Threshold is lower in case of common friends

$$P(ij) = P(U_{ij} + \varepsilon_{ij} > u_0 - \Theta)$$

- transitivity
- $ightharpoonup U_{ij}$ symmetric, and contains distance and homophily measures

Introduction Inspiration Model Conclusions

Pros and Cons

- Pros
 - \triangleright ε_{ij} logistically distributed leads to closed form likelihood
 - basically a "yes/no" logit for each tie
 - each tie can be considered in (almost) isolation for estimation
 - intuitive two-rounds generation algorithm
- Cons
 - Degree increases with size of the "choice set"
 - ▶ thresholds u_0 and Θ need to be calibrated to reproduce average degree and clustering
 - Diversity of chosen friends decreases with size of the choice set
 - ▶ in particular spatial distribution!

Results

			Homophily		
Soc. Net.	Clust.	Avg. Deg.	Age	Gender	Dist.
Snowball	0.206	22	46.3%	61.7%	26.6 km
0.025% 0.025% (ZH)	0.190 0.187	22 20.6	30.7% 29.4%	56.5% 55.7%	49.1 km 17.8 km
10% 10% (ZH)	0.150 0.225	21.7 20.6	45.2% 45.4%	66.0% 66.2%	18.8 km 7.3 km

Inspiration for the Current Model

New Model

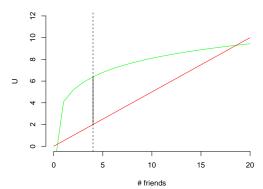
New Model

- Aim: try to overcome the Cons
 - ▶ (leads to dropping some Pros. . .)
- Basic Idea:
 - friends come with a utility (they are nice) and a cost (but they cost time)
 - "marginal utility" of an additional friend decreases with number of friends
 - individuals balance utility and cost
 - possible cost functions:
 - ▶ linear in ego-centric network size
 - linear in number of cliques
 - "multiple discreteness" formulation

Natural Formulation

▶ Basic decision rule: ego e choses the ego-centric network N that maximizes

$$\log \left(\sum_{i \in \mathcal{N}} U_{ei} \right) - \mathcal{C}(\mathcal{N})$$



Problems

- ▶ In this general form, combinatorial
- might be possible to make estimable/simulable by additional hypotheses. . .

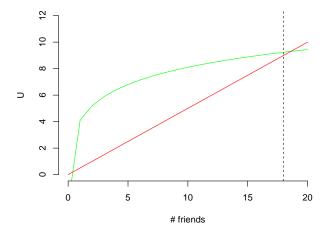
Alternative Formulation

ightharpoonup Basic decision rule: ego e accepts any tie as long as resulting ego-centric network $\mathcal N$ satisfies

$$\log\left(\sum_{i\in\mathcal{N}}U_{ei}
ight)\geq\mathcal{C}(\mathcal{N})$$

- for estimation: likelihood of a tie is its probability of acceptance given the rest of the ego-centric network
- for simulation:
 - simulate the utilities
 - greedy algorithm: grow the network until no improvement is possible
 - select all remaining agents in the "choice set" that fulfill de condition
 - take one at random
 - should work if $\mathcal{C}(\mathcal{N})$ grows with $|\mathcal{N}|$

Intuition



Likelihood: Probability of a Tie

- Consider each tie independently
 - non-realized ties as well
- ullet $U_{ea}=U_{ae}=V_{ea}+arepsilon_{ea}$
- ▶ ego e accepts tie ea if

$$arepsilon_{ea} > \exp\left(\mathcal{C}(\mathcal{N}_{+ea}^{\mathsf{e}})\right) - \sum_{i \neq a} U_{ei} - V_{ea} = \Theta_{ea}$$

we know the existing network, so we know

$$\sum_{i \neq a} U_{ei} > \exp(\mathcal{C}(\mathcal{N}_{-ea}^{e})) = \Theta_{-ea}$$

▶ The probability P(ea) to observe a tie ea is:

$$P\left(\varepsilon_{ea} > \max(\Theta_{ea}, \Theta_{ae}) \left| \sum_{i \neq a} U_{ei} > \Theta_{-ea}, \sum_{i \neq e} U_{ai} > \Theta_{-ae} \right) \right|$$

Estimation

- No chance of getting a closed form here
- Assume $\varepsilon \sim \mathcal{N}(0,1)$. Then the sum of n realizations follows $\mathcal{N}(0,n)$
- ▶ For each tie, can simulate P(ea) (resp. $P(\neg ea)$):
 - ▶ Sampling $\sum_{i\neq a} U_{ei}$ from truncated normal distribution
 - ▶ Inject resulting Θ_{ea} in $1 \mathrm{CDF}$
 - Average
 - ▶ Likelihood: $\Pi_{ea \in obs} P(ea) \Pi_{ea \in \neg obs} P(\neg ea)$
- First results
 - ▶ use R and maxLik package
 - First estimation still running...
 - Quite expensive computationally
 - Generation: Java code from the Arentze approach largely usable

Introduction Inspiration Model Conclusions

Pros and Cons

- Pros
 - each tie can be considered in (almost) isolation for estimation
 - intuitive generation algorithm?
 - no calibration?
 - degree should be relatively stable with choice set size
 - diversity of generated social networks should be relatively stable
- Cons
 - no closed form likelihood
 - others to discover...

Inspiration for the Current Model

New Mode

- Design of a Model to generate social networks
- Existing model works, but has important flaws
- Tradeoff between elegance and usability
- Actual interest of the model still to be tested...