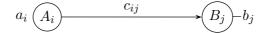


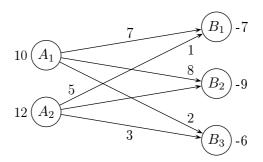
Corrigé 9

Problème 1

a) On va représenter chaque usine par un sommet et les trajets possibles entre deux usines par un arc :



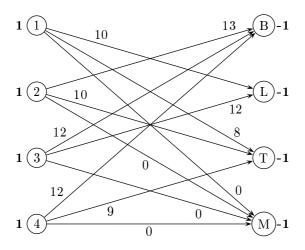
Pour la donnée de notre problème, on obtient la modélisation suivante :



b) Soient les variables $x_{ij} = \text{le nombre de pièces qui vont de } i \ a j$, pour $i \in \{1, 2\}$ et $j \in \{1, 2, 3\}$. On peut alors écrire le problème de la manière suivante :

Problème 2

Pour modéliser ce problème comme un problème de transbordement, on va représenter chaque journaliste par un sommet numéroté de 1 à 4 et chaque destination par B, pour Burundi, L pour Liberia et T pour Tchétchénie. Chaque sommet journaliste a une offre de 1 et chaque sommet destination une demande de 1. Comme la somme des demandes doit être égale à la somme des offres, et que l'on a 4 journalistes et uniquement 3 destinations, on ajoute une sommet maison M pour y affecter le journaliste qui ne partira pas en reportage. Les coûts des arcs correspondent à la prime de risque demandée par les journalistes pour les différentes destinations. S'ils ne partent pas, ils ne gagent rien. En résolvant le problème de transbordement à coût minimum dans le graphe ci-dessous, on saura comment affecter les journalistes aux différents pays.



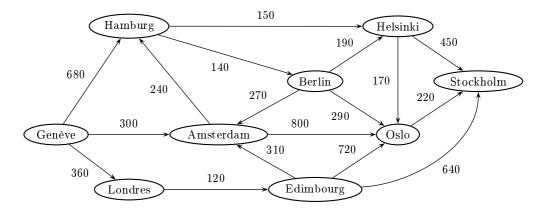
Problème 3

Les divergences pour chaque noeud du graphe sont les suivantes : $y_1 = 0$, $y_2 = -4$, $y_3 = 4$ et $y_4 = 0$.

Comme les divergences ne sont pas toutes nulles, le vecteur de flot dans le réseau ne correspond pas à une circulation.

Problème 4

a) Il s'agit de trouver le plus court chemin au sens du prix à payer de Genève à Stockholm. Comme le fait de passer par une ville suppose que l'on doit y rester une nuit, il faut ajouter le prix de l'hôtel correspondant à chaque arc sortant d'une ville escale. Le nouveau graphe devient :



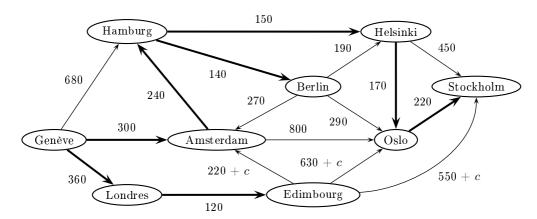
Les poids des arcs étant tous positifs on applique l'algorithme de Dijkstra, où G, A, B, E, Ha, He, L, O et S sont les initiales des villes :

Itér.	i_{min}	Étiquette $\lambda_i/$ prédécesseur $p(i)$ à la fin de l'itération									
		G	A	В	\mathbf{E}	$_{ m Ha}$	${\rm He}$	${ m L}$	Ο	S	
0		0/-	∞/G	$\infty/$ -	$\infty/$ -	∞/G	$\infty/$ -	∞/G	∞ /-	$\infty/$ -	
1	G	0/-	$300/\mathrm{G}$	$\infty/$ -	$\infty/$ -	540/A	$\infty/$ -	$360/\mathrm{G}$	1100/A	$\infty/$ -	
2	Α		$300/\mathrm{G}$	$\infty/$ -	480/L	540/A	$\infty/$ -	$360/\mathrm{G}$	1100/A	$\infty/$ -	
3	L			$\infty/$ -	480/L	540/A	$\infty/$ -	$360/\mathrm{G}$	1100/A	∞ /-	
4	\mathbf{E}			$680/\mathrm{Ha}$	480/L	540/A	$690/\mathrm{Ha}$		1100/A	$1120/\mathrm{E}$	
5	На			$680/\mathrm{Ha}$		540/A	$690/\mathrm{Ha}$		$970/\mathrm{B}$	$1120/\mathrm{E}$	
6	В			$680/\mathrm{Ha}$			$690/\mathrm{Ha}$		$860/\mathrm{He}$	$1120/\mathrm{E}$	
7	${\rm He}$						$690/\mathrm{Ha}$		$860/\mathrm{He}$	1080/O	
8	Ο								$860/\mathrm{He}$	1080/O	
9	S									$1080/\mathrm{O}$	

Le plus court chemin entre Genève et Stockholm coûte 1080 Frs. Le chemin optimal est :

$$Gen\`{e}ve \longrightarrow Amsterdam \longrightarrow Hamburg \longrightarrow Helsinki \longrightarrow Oslo \longrightarrow Stockholm$$

b) Soit $c \ge 0$ le prix de la chambre à Edimbourg. Le nouveau graphe de travail est représenté ci-dessous où l'arbre optimal du point précédent est représenté en gras :



Le chemin le plus court (i.e. le moins cher) pour aller de Genève à Edimbourg a une longueur de $\lambda_E=480$. Comme $\lambda_E+630+c>\lambda_O$ (respectivement $\lambda_E+220+c>\lambda_A$) $\forall c\geq 0$, le plus court chemin entre Genève et Oslo (respectivement Amsterdam) ne sera pas modifié. Par contre, on constate que $\lambda_E+550+c=1030+c\leq\lambda_O=1080$ si $c\leq 50$. La solution actuelle n'est donc plus optimale pour c<50. Comme 1030+c est de toute façon plus grand que chacun des λ_i excepté pour Stockholm, on en conclut que la seule modification par rapport à la solution actuelle est que l'on choisira d'aller à Stockholm depuis Edimbourg plutôt que depuis Oslo pour autant que $c\leq 50$. La solution optimale est donc donnée par

$$Gen\`{e}ve \longrightarrow Londres \longrightarrow Edimbourg \longrightarrow Stockholm$$

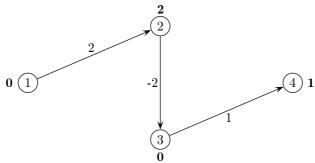
si $c \leq 50$.

Problème 5

a) Le déroulement de l'algorithme est résumé dans le tableau suivant :

Itération	T	Et	iquette	(prédéc	Nœud suivant	
		1	2	3	4	
1	{1}	0	∞	∞	∞	1
2	$\{2,3\}$	0	2(1)	1(1)	∞	3
3	$\{2,4\}$	0	2(1)	1(1)	2(3)	2
4	$\{3,4\}$	0	2(1)	0(2)	2(3)	3
5	{4}	0	2(1)	0(2)	1(3)	4
6	Ø	0	2(1)	0(2)	1(3)	

- b) En effet, le sommet 3 est traité deux fois. Ceci provient du fait qu'une hypothèse sur le réseau n'est pas vérifiée : le poids de l'arc (2,3) est négatif. On remarque néanmoins que l'algorithme fonctionne correctement et fournit les plus courts chemins depuis 1.
- c) L'arbre correspondant aux plus courts cheminx est représenté ci-dessous :



Les étiquettes sur les noeuds représentent les plus courtes distances du noeud 1 jusqu'au noeud courant.

- d) Vérifions pour chaque noeud si les conditions sont respectées :
 - 1. $d_1 = 0$
 - 2. $d_2 = 2 \le d_1 + 2$ et $d_2 = d_1 + 2$
 - 3. $d_3 = 0 \le d_2 2$, $d_3 \le d_1 + 1$ et $d_3 = d_2 2$
 - 4. $d_4 = 1 \le d_2 + 1$, $d_4 \le d_3 + 1$ et $d_4 = d_3 + 1$.

Toutes ces conditions sont vérifiées, la solution obtenue est donc optimale.

Problème 6

Première possibilité

Pour déterminer la voie la plus courte de Genève à Saint-Gall en passant par Bâle, il faut joindre bout à bout la plus courte chaîne de Genève à Bâle et celle de Bâle à Saint-Gall.

Comme le graphe est non orienté, il suffit de calculer la voie la plus courte de Bâle à tous les autres sommets. On n'appliquera donc qu'une fois un algorithme de plus courts chemins.

Deuxième possibilité

Il suffit de duppliquer le graphe et de joindre les copies par les sommets correspondant à Bâle, soit par un arc de distance nulle, soit en superposant ces deux sommets. On determine alors la voie la plus courte entre Genève et la copie de Saint-Gall, en n'appliquant qu'une seule fois un algorithme de plus cours chemins. Ce chemin passera forcément par Bâle et sa copie.