

$\begin{array}{c} \text{RECHERCHE} \\ \text{OPÉRATIONNELLE} \\ \text{GC/SIE} \end{array}$

Printemps 2011

Corrigé 7

Problème 1

Posons le problème auxiliaire suivant :

Après avoir introduit les variables artificielles y_1 et y_2 , on cherche une solution admissible de notre problème à l'aide d'une phase 1 de l'algorithme du simplexe

$$T_0 = \begin{bmatrix} x_1 & x_2 & x_3 & y_1 & y_2 & \theta \\ -2 & -1 & 1 & 1 & 0 & 1 \\ -1 & \mathbf{2} & -1 & 0 & 1 & 2 \\ \hline 3 & -1 & 0 & 0 & 0 & -3 \end{bmatrix} \qquad \uparrow$$

$$T_1 = egin{bmatrix} x_1 & x_2 & x_3 & y_1 & y_2 & heta &$$

	x_1	x_2	x_3	y_1	y_2	
$T_2 =$	-5 -3	0	1	2	1	4
	-3	1	0	1	1	3
	0	0	0	1	1	0

La phase 1 du simplexe est terminée. On peut à partir de cette base admissible résoudre la phase II.

$$T_0 = \begin{bmatrix} x_1 & x_2 & x_3 \\ -5 & 0 & 1 & 4 \\ -3 & 1 & 0 & 3 \\ \hline 10 & 0 & 0 & -10 \end{bmatrix}$$

Ce tableau est optimal. La solution optimale du problème est $x_1 = 0$, $x_2 = 3$, $x_3 = 4$, z = 10.

Problème 2

a) Posons x_1 le nombre de radios de type A et x_2 le nombre de radios de type B produites chaque semaine.

Le programme linéaire maximisant le chiffre d'affaires hebdomadaire de RadioIn est donc donné par :

Max
$$z = 15x_1 + 10x_2$$

s.c. $x_1 + 2x_2 \le 24$
 $2x_1 + x_2 \ge 10$
 $2x_1 + x_2 \le 45$
 $x_1 + 3x_2 \le 30$
 $x_1 , x_2 \ge 0$

Forme canonique

b) Forme standard:

On obtient le tableau suivant :

	x_1	x_2	x_3	x_4	x_5	x_6	
	1	2	1	0	0	0	24
T_0	-2	-1	0	1	0	0	-10
10	2	1	0	0	1	0	45
	1	3	0	0	0	1	30
	-15	-10	0	0	0	0	0

Ce tableau est non admissible donc la phase I est nécessaire pour déterminer une solution de base admissible.

Problème auxiliaire : (Multiplier la deuxième contrainte par -1 pour avoir $b \ge 0$ et rajouter la variable artificielle y_1)

Min
$$w = y_1$$

s.c. $x_1 + 2x_2 + x_3 = 24$
 $2x_1 + x_2 - x_4 + y_1 = 10$
 $2x_1 + x_2 + x_5 = 45$
 $x_1 + 3x_2 + x_6 = 30$
 $x_1, x_2, x_3, x_4, x_5, x_6, y_1 \ge 0$

Tableau initial du problème auxiliaire :

	x_1	x_2	x_3	x_4	x_5	x_6	y_1	
T_0^{aux}	1	2	1	0	0	0	0	24
	2	1	0	-1	0	0	1	10
	2	1	0	0	1	0	0	45
	1	3	0	0	0	1	0	30
	-2	-1	0	1	0	0	0	-10

Problème 3

Après avoir introduit les variables d'écart x_4 et x_5 , on obtient le tableau initial suivant :

	x_1	x_2	x_3	x_4	x_5	
$T_0 =$	-1	-1	-1	1	0	-1
	1	2	5	0	1	10
	1	-2	1	0	0	0

Ce tableau n'étant pas admissible, on applique une phase I: on multiplie par -1 la 1ère contrainte pour que $b \ge 0$, on introduit les variables artificielles y_1 et y_2 et la fonction objectif $z' = y_1 + y_2$ du problème auxiliaire que l'on va chercher à minimiser

$$T_0^{
m aux} = egin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & y_1 & y_2 \ \hline 1 & 1 & 1 & -1 & 0 & 1 & 0 & 1 \ 1 & 2 & 5 & 0 & 1 & 0 & 1 & 10 \ -2 & -3 & -6 & 1 & -1 & 0 & 0 & -11 \end{bmatrix}$$

Ensuite on applique l'algorithme phase II au problème auxiliaire :

$$T_1^{
m aux} = egin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & y_1 & y_2 \ 1 & 1 & 1 & -1 & 0 & 1 & 0 & 1 \ 0 & 1 & 4 & 1 & 1 & -1 & 1 & 9 \ 0 & -1 & -4 & -1 & -1 & 2 & 0 & -9 \end{bmatrix}$$

$$T_2^{\text{aux}} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & y_1 & y_2 \\ 1 & 1 & 1 & -1 & 0 & 1 & 0 & 1 \\ -1 & 0 & 3 & 2 & 1 & -2 & 1 & 8 \\ 1 & 0 & -3 & -2 & -1 & 3 & 0 & -8 \end{bmatrix}$$

$$T_3^{
m aux} = egin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & y_1 & y_2 \ \hline 1 & 1 & 1 & -1 & 0 & 1 & 0 & 1 \ -4 & -3 & 0 & \mathbf{5} & 1 & -5 & 1 & 5 \ \hline 4 & 3 & 0 & -5 & -1 & 6 & 0 & -5 \end{bmatrix}$$

$$T_4^{
m aux} = egin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & y_1 & y_2 \ \hline 1/5 & 2/5 & 1 & 0 & 1/5 & 0 & 1/5 & 2 \ -4/5 & -3/5 & 0 & 1 & 1/5 & -1 & 1/5 & 1 \ \hline 0 & 0 & 0 & 0 & 0 & 11 & 1 & 0 \end{bmatrix}$$

Ce tableau est optimal pour la fonction objectif z'. De plus, comme z'=0 et les variables artificielles y_1 et y_2 sont hors base, on obtient un tableau initial admissible pour le problème initial en biffant les colonnes correspondant à y_1 et y_2 , et en mettant à jour les coûts réduits.

$$T_0 = egin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \ \hline 1/5 & \mathbf{2}/\mathbf{5} & 1 & 0 & 1/5 & 2 \ -4/5 & -3/5 & 0 & 1 & 1/5 & 1 \ \hline 4/5 & -12/5 & 0 & 0 & -1/5 & -2 \end{bmatrix}$$

On applique l'algorithme phase II au problème :

	x_1	x_2	x_3	x_4	x_5	
$T_1 =$	1/2	1	5/2	0	1/2	5
	-1/2	0	3/2	1	1/2	4
	2	0	6	0	1	10

Ce tableau est optimal et la solution du problème est $x_1=0,\,x_2=5,\,x_3=0,\,x_4=4,\,x_5=0,$ et z=-10.

April 1, 2011 - mbi/mfe