Printemps 2011

Corrigé 6

Problème 1

a) Si les indices de base sont 1,2, et 3, la matrice de base est donnée par :

$$B = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{array}\right)$$

Dont l'inverse s'écrit:

$$B^{-1} = \begin{pmatrix} -1/3 & 2/3 & 1/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & -1/3 & 1/3 \end{pmatrix}$$

Le vecteur b étant $b = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$, les variables de base valent $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = B^{-1}b = \begin{pmatrix} 4/3 \\ 1/3 \\ 7/3 \end{pmatrix}$

La variable hors-base x_4 vaut par définition 0.

Cette solution est admissible.

b) Calculons le coût réduit pour la variable x_4 :

$$\bar{c}_4 = c_4 - c_B^T B^{-1} A_4 = 1 > 0$$

La variable x_4 ne réduit pas le coût. La solution de base d'indices 1,2 et 3 correspond donc a l'optimum du problème.

Problème 2

a) On introduit les variables d'écart x_3 , x_4 et x_5 :

b) On obtient le tableau initial suivant :

	x_1	x_2	x_3	x_4	x_5		θ	
	1	2	1	0	0	50	50 20	
$T_0 =$	1	0	0	1	0	50 20 30	20	\leftarrow
10	0	1	0	0	1	30		
	-3	-4	0	0	0	0		
'	↑							

Les variables en base sont x_3 , x_4 et x_5 . Le point extrême visité est (0,0).

$$T_1 = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \theta \\ 0 & 2 & 1 & -1 & 0 & 30 \\ 1 & 0 & 0 & 1 & 0 & 20 \\ 0 & 1 & 0 & 0 & 1 & 30 \\ \hline 0 & -4 & 0 & 3 & 0 & 60 \end{bmatrix} \quad 30$$

Les variables en base sont x_3 , x_1 et x_5 . Le point extrême visité est (20,0).

$$x^{+} = \begin{pmatrix} 0 \\ 0 \\ 50 \\ 20 \\ 30 \end{pmatrix} + 20 \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 20 \\ 0 \\ 30 \\ 0 \\ 30 \end{pmatrix}$$

Les variables en base sont x_2 , x_1 et x_5 . Le point extrême visité est (20, 15).

$$x^{+} = \begin{pmatrix} 20\\0\\30\\0\\30 \end{pmatrix} + 15 \begin{pmatrix} 0\\1\\-2\\0\\-1 \end{pmatrix} = \begin{pmatrix} 20\\15\\0\\0\\15 \end{pmatrix}$$

Tous les coûts réduits étant positifs, ce tableau est optimal. La solution optimale est $x_1^* = 20$ et $x_2^* = 15$, pour une valeur de la fonction objectif de $z^* = -120$.

Problème 3

a) On note

 x_1 , x_2 et x_3 les milliers de francs qui seront légués respectivement à André, Blaise et Claude ;

 d_1 , d_2 et d_3 les pourcentages des dépenses respectives d'André, Blaise et Claude ;

 r_1 , r_2 et r_3 les intérêts des investissements respectifs d'André, Blaise et Claude.

On a donc

	André	Blaise	Claude
d	2/5	3/10	1/5
r	1/6	3/7	0

Pour chaque petit-neveu, on a les relations suivantes :

argent dépensé en une année argent restant le 31 décembre : $x_i - d_i \cdot x_i$ $: (x_i - d_i \cdot x_i) \cdot r_i$ intérêt reçu argent après calcul de l'intérêt : $(x_i - d_i \cdot x_i) \cdot (1 + r_i)$

Grâce à ces relations on peut écrire le programme linéaire que le notaire doit résoudre.

Sous forme canonique et avec les valeurs numériques le programme linéaire sécrit

Sous forme standard ce programme linéaire sécrit

b) Après l'application de l'algorithme du simplexe, on trouve $x_1 = 50/3$, $x_2 = 100/3$ et $x_3 = 50 \text{ avec } z = -85.$

En conséquence, le grand-oncle doit donner

 $\sim 16'666$ Frs à André, $\sim 33'333$ Frs à Blaise et 50'000 Frs à Claude.

Il va donc leur léguer $\sim 100'000$ Frs et, à la fin de l'année, il leur restera 85'000 Frs.