Introduction
à l'optimisation
Fall 2014-2015
Enseignant: M. Bierlaire
Assistante: Sh. Sharif Azadeh

Session 13: Conditions d'optimalité

Question 1:

a) The gradient of the function can be written as:

$$
\begin{cases}\frac{\partial f}{\partial x_{1}} & 4 x_{1}\left(x_{1}^{2}-4\right) \\ \frac{\partial f}{\partial x_{2}} & 2 x_{2}\end{cases}
$$

By solving the above equations we obtain $(-2,0),(0,0),(2,0)$ as stationary points. Therefore for each point we check the hessian matrix. For $(-2,0)$ the hessian matrix is positive therefore it is a local minimum. with the same reasoning $(0,0)$ is a saddle point and $(2,0)$ is a local minimum.
b) The same procedure as (a), in this case, $(0,0)$ is a saddle point.

Question 2:

a)

$$
\begin{gathered}
\nabla f(x, y)=\binom{4 x^{3}-4 x}{3 y^{2}-3} \\
\nabla f^{2}(x, y)=\left(\begin{array}{cc}
12 x^{2}-4 x & 0 \\
0 & 6 y
\end{array}\right)
\end{gathered}
$$

$(2,2)$ is not a minimum, $(-1,1)$ is minimum and $(0,-1)$ is maximum.
b) $x_{0}=\binom{2}{2}$

$$
\begin{gathered}
x_{1}=x 0-\left(\nabla^{2} f(2,2)\right)^{-1} \nabla f(2,2)=\binom{16 / 11}{5 / 4} \\
x_{2}=x_{1}-\left(\nabla^{2} f\left(x_{1}\right)\right)^{-1} \nabla f\left(x_{1}\right)=\binom{1.151}{1.025}
\end{gathered}
$$

Introduction
à l'optimisation
Fall 2014-2015
Enseignant: M. Bierlaire
Assistante: Sh. Sharif Azadeh

Session 13: Conditions d'optimalité

Question 3: we calculate the gradient

$$
\nabla f\left(x_{k}\right)=\binom{2 x_{1}+2 x_{2}}{2 x_{1}+4 x_{2}}
$$

the Hessian :

$$
H\left(x_{k}\right)=\left(\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right)
$$

and its inverse:

$$
H^{-1}\left(x_{k}\right)=\left(\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)
$$

We know that we have

$$
H^{-1}\left(x_{k}\right) \nabla f\left(x_{k}\right)=\left(\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)\binom{2 x_{1}+2 x_{2}}{2 x_{1}+4 x 2}=\binom{x_{1}}{x_{2}}=x_{k}
$$

Also, for $x_{k} \in \mathbb{R}^{2}$ we have:

$$
x_{k+1}=x_{k}-H^{-1}\left(x_{k}\right) \nabla f\left(x_{k}\right)=x_{k}-x_{k}=(0,0)
$$

Therefore, for one iteration and independent of intial point $\left(x_{k}\right)$ Newton method converge toward minimum of the function.

