Introduction
à l'optimisation
Fall 2014-2015
Enseignant: M. Bierlaire
Optimisation en nombres entiers

Question 1:

1. In this problem nodes $3,7,5,6$ are active and between these nodes node 5 has the minimum value (27) Upper bound is the best feasible solution (31). The solution is in the range $[27,31]$
2. Nodes $6,7,8$ are pruned Nodes 3,5 should be explored

Question 2:

The solution of relaxation problem is $(16 / 3)$ with $(4 / 3,4 / 3)$
The integer solution is $(1,3 / 2)$ whose objective function is (11/2)

Question 3:

1)

$p \in P:\{$ Carl,Chris,David,Tony,Ken \}
$s \in S:\{$ Backstroke,Breaststroke,Butterfly,Freestyle\}
$T_{p, s}$: Best time of stroke s for swimmer p
$x_{p, s}$: Binary variable, if persone p is assigned to stroke s

$$
\begin{align*}
& \sum_{s \in S} \sum_{p \in P} T_{p, s} x_{p, s} \tag{1}\\
& \sum_{p \in P} x_{p, s}=1 \quad \forall s \in S \tag{2}\\
& \sum_{s \in S} x_{p, s} \leq 1 \quad \forall p \in P \tag{3}
\end{align*}
$$

2)

In order to transform it to the assignment problem we chage the set S in the following manner:
$s \in S:\{$ Backstroke, Breaststroke, Butterfly, Freestyle, Dummy \}

$$
\begin{align*}
& \sum_{s \in S} \sum_{p \in P} T_{p, s} x_{p, s} \tag{4}\\
& \sum_{p \in P} x_{p, s}=1 \quad \forall s \in S \tag{5}\\
& \sum_{s \in S} x_{p, s}=1 \quad \forall p \in P \tag{6}
\end{align*}
$$

3)

Optimal solution is 126.2 . David is assigned to backstroke. Tony to breaststroke. Chris to butterfly and Carl o freestyle.

