CIVIL-557 Decision Aid Methodologies In Transportation

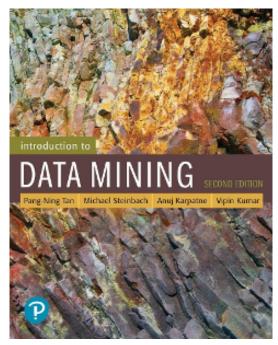
Lecture II: Data Mining in Transport – Classification

Nikola Obrenovic

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

Acknowledgement

- The content of these slides has been partially taken over from the official slides accompanying the book: P.-N. Tan, M.
 Steinbach, A. Karpatne, V. Kumar: Introduction to Data Mining (2nd Edition)
- https://www-users.cs.umn.edu/~kumar001/dmbook/index.php



Classification: Definition

- Given a collection of records (the training set)
 - Each record is by characterized by a tuple (*x*,*y*), where *x* is the attribute set and *y* is the class label
 - *x*: attribute, predictor, independent variable, input *y*: class, response, dependent variable, output
- Task:
 - Learn a model that maps each attribute set x into one of the predefined class labels y

Examples of Classification Task

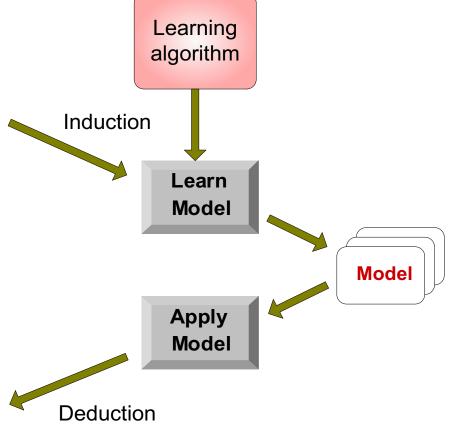
Task	Attribute set, x	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

General Approach for Building Classification Model

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?



Classification Techniques

- Base Classifiers
 - Logistic regression
 - Nearest-neighbor
 - Decision Tree based Methods
 - Neural Networks
 - Deep Learning
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers

- Boosting, Bagging, Random Forests

Logistic Regression

- Can be used as a technique for classification, not regression.
- "Regression" comes from fact that we fit the feature space to a model.
- Involves a more probabilistic view of classification.

Different ways of expressing probability

 Consider a two-outcome probability space, where:

$$- P(O_1) = p$$

 $- P(O_2) = 1 - p = c$

• We can express probability of O_1 as:

	notation	range equivalents		
standard probability	р	0	0.5	1
odds	p / q	0	1	+ ∞
log odds (logit)	log(p / q)	- ∞	0	+ ∞

Log odds

- Numeric treatment of outcomes O1 and O2 is equivalent
 - If neither outcome is favored over the other, then log odds = 0.
 - If one outcome is favored with log odds = x, then other outcome is disfavored with log odds = -x.

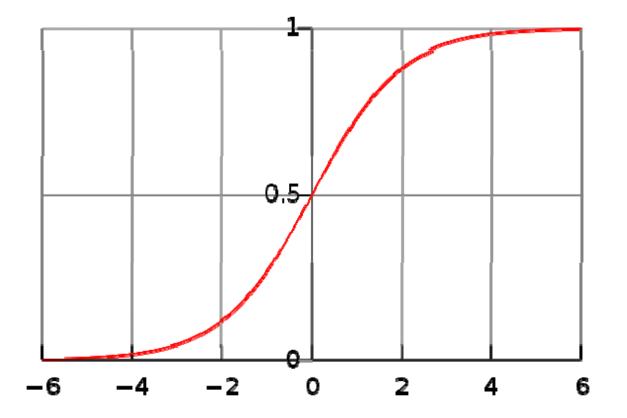
From probability to log odds (and back again)

$$z = \log\left(\frac{p}{1-p}\right)$$
$$\frac{p}{1-p} = e^{z}$$
$$p = \frac{e^{z}}{1+e^{z}} = \frac{1}{1+e^{-z}}$$

logit function

logistic function

Standard logistic function



Logistic regression

- Scenario:
 - A multidimensional feature space (features can be categorical or continuous).
 - Outcome is discrete, not continuous.

We'll focus on case of two classes.

 It seems plausible that a linear decision boundary (hyperplane) will give good predictive accuracy.

Logistic Regression Model

- Model consists of a vector β in d-dimensional feature space
- For a point *x* in feature space, project it onto *β* to convert it into a real number *z* in the range ∞ to +

$$z = \alpha + \boldsymbol{\beta} \cdot \boldsymbol{x} = \alpha + \beta_1 x_1 + \dots + \beta_d x_d$$

- Map z to the range 0 to 1 using the logistic function $p = 1/(1 + e^{-z})$
- Overall, logistic regression maps a point *x* in *d*dimensional feature space to a value in the range 0 to 1

Logistic Regression Model

- Can interpret prediction from a logistic regression model as:
 - A probability of class membership
 - A class assignment, by applying threshold to probability
 - threshold represents decision boundary in feature space

Training a Logistic Regression Model

- Need to optimize $\boldsymbol{\beta}$ so the model gives the best possible reproduction of training set labels
 - Minimization of the cost function
 - Numerical approximation of maximum likelihood
 - On really large datasets, may use stochastic gradient descent

Logistic regression

- Advantages:
 - Makes no assumptions about distributions of classes in feature space
 - Easily extended to multiple classes (multinomial regression)
 - Natural probabilistic view of class predictions
 - Quick to train
 - Very fast at classifying unknown records
 - Good accuracy for many simple data sets
 - Resistant to overfitting
 - Can interpret model coefficients as indicators of feature importance
- Disadvantages:
 - Linear decision boundary

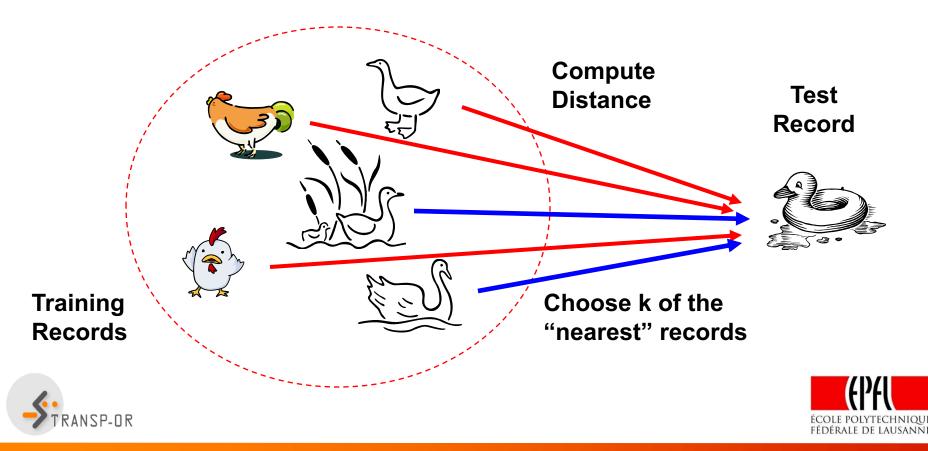
Instance Based Classifiers

- Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

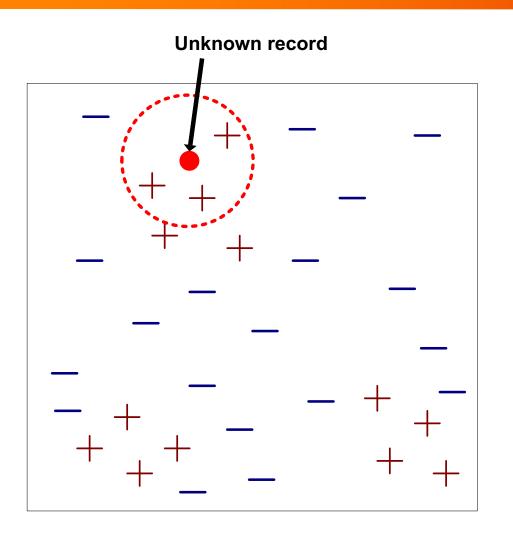
Nearest Neighbor Classifiers

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

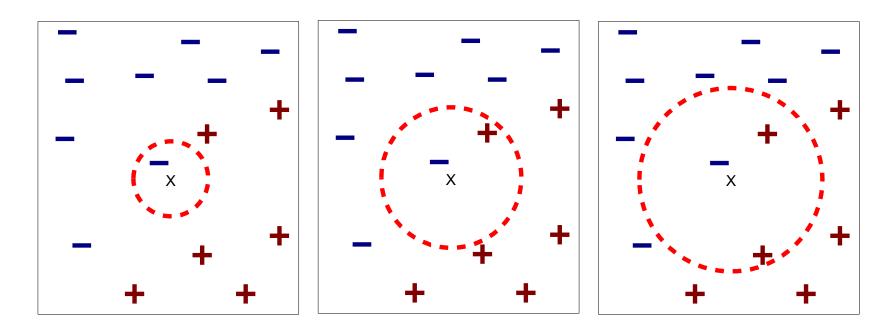


Nearest-Neighbor Classifiers



- Requires three things
 - The set of labeled records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor



(a) 1-nearest neighbor

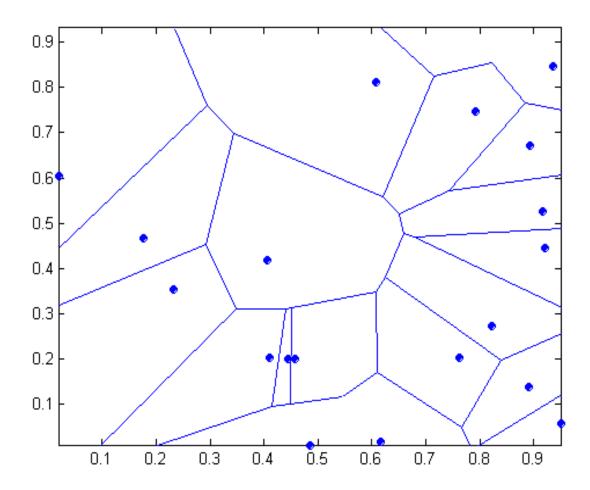
(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distances to x

1 nearest-neighbor

Voronoi Diagram



Nearest Neighbor Classification

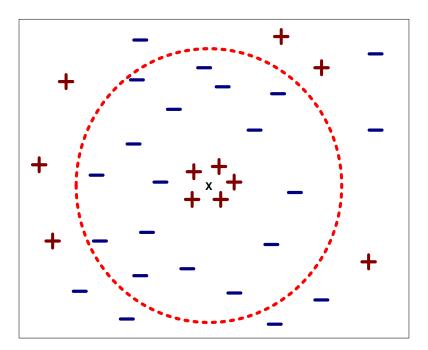
- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes



Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

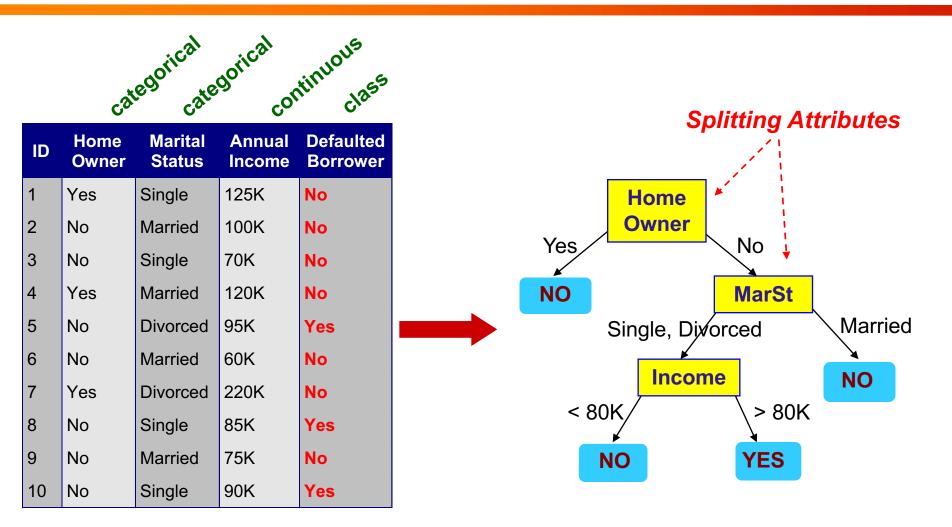
Nearest neighbor Classification...

- k-NN classifiers are lazy learners since they do not build models explicitly
- Pros:
 - Can produce arbitrarily shaped decision boundaries
 - Applicable for highly dimensional data
 - Not sensitive to variable interactions
- Cons:
 - Classifying unknown records are relatively expensive
 - Selection of right proximity measure is essential
 - Redundant attributes can create problems
 - Missing attributes are hard to handle

Case Study

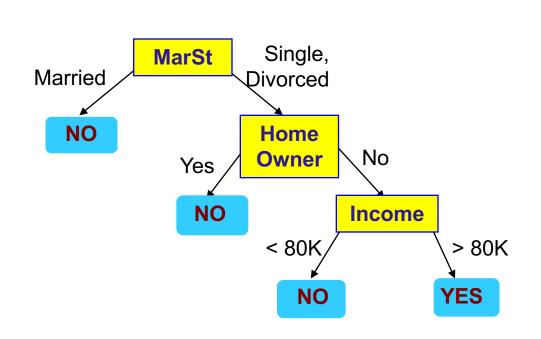
- Jithin Raja, Hareesh Bahuleyana, Lelitha Devi Vanajakshia: Application of data mining techniques for traffic density estimation and prediction, <u>https://doi.org/10.1016/j.trpro.2016.11.102</u> (open access)
- Analysis of automated sensor data for prediction of traffic state
 - Traffic volume and mean speed as inputs
 - Used: k-nearest neighbors and artificial neural network algorithms
 - Estimation of traffic density
 - Forecasting road congestions
- Possible improvements?

Example of a Decision Tree

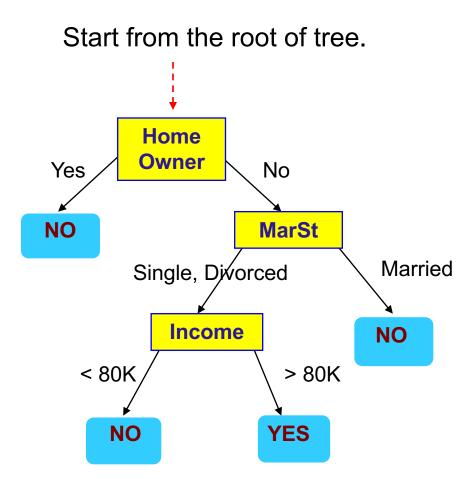


Model: Decision Tree

Another Example of Decision Tree

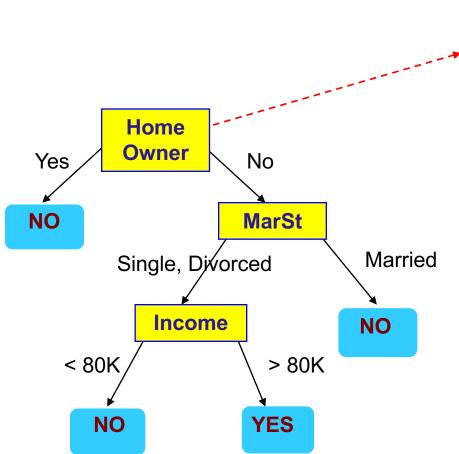


There could be more than one tree that fits the same data!



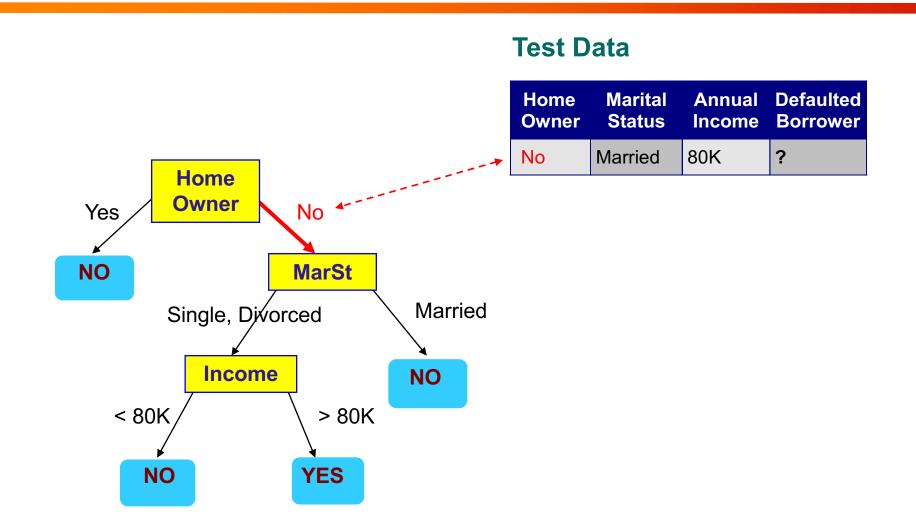
Test Data

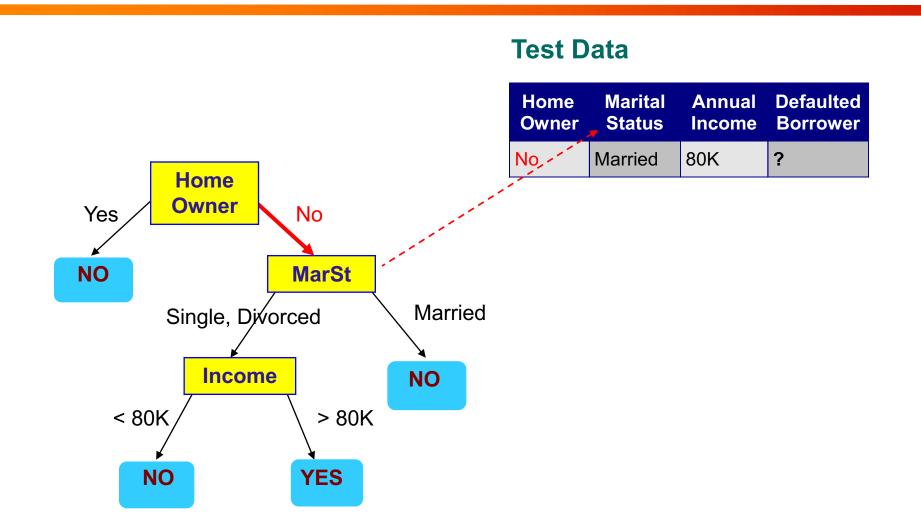
			Defaulted Borrower
No	Married	80K	?

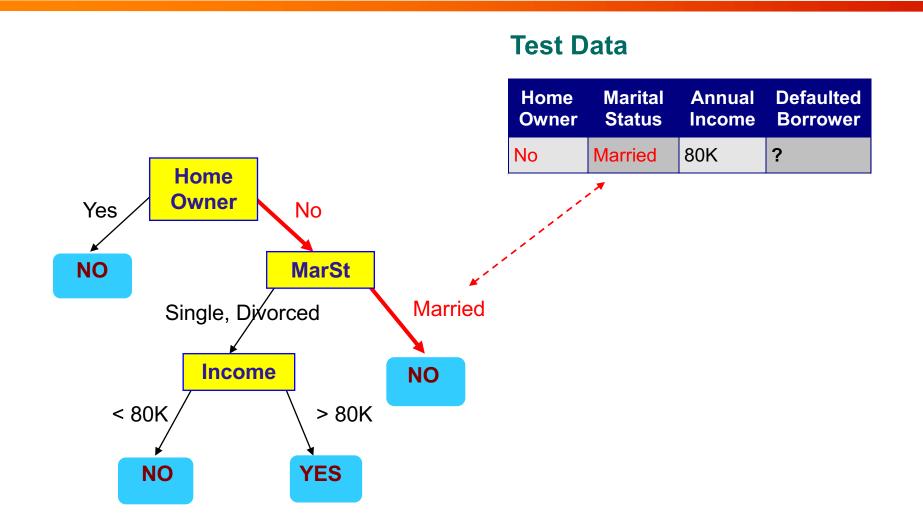


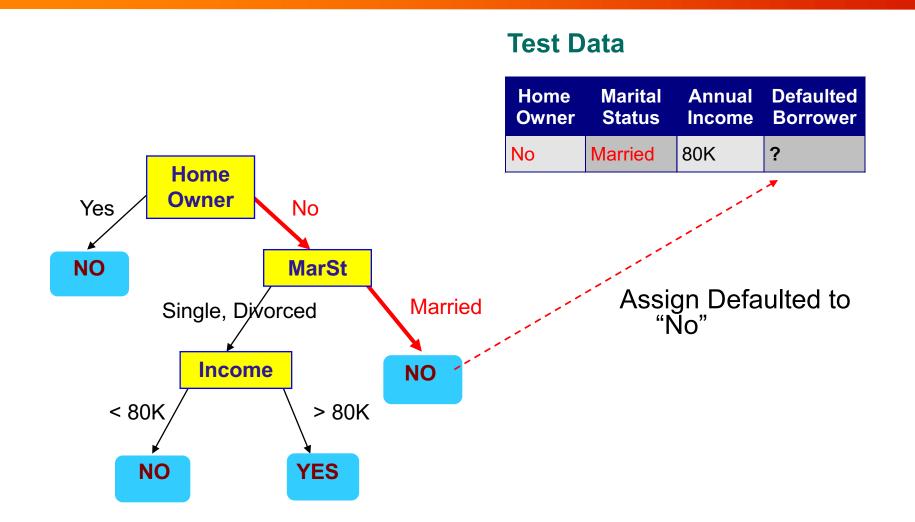
Test Data

Home	Marital	Annual	Defaulted
Owner	Status	Income	Borrower
No	Married	80K	









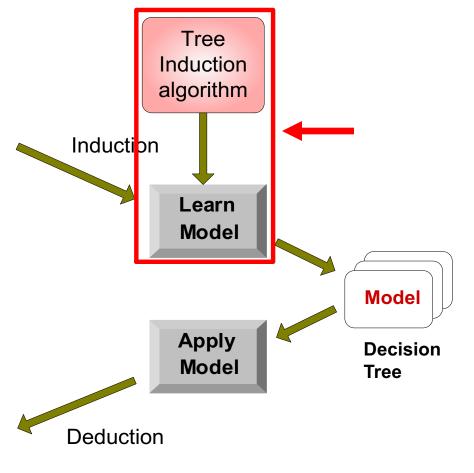
Decision Tree Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set



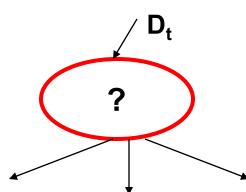
Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

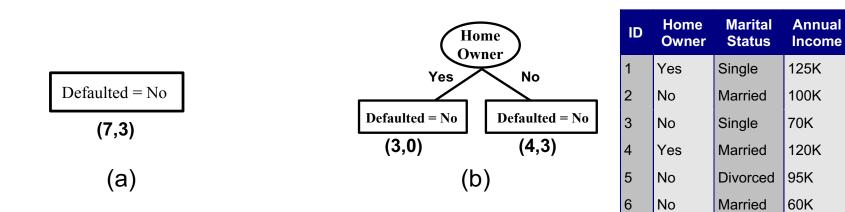


ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted – No	
Defaulted = No	

(7,3)

(a)



7

8

9

10

Yes

No

No

No

Defaulted

Borrower

No

No

No

No

Yes

No

No

Yes

No

Yes

220K

85K

75K

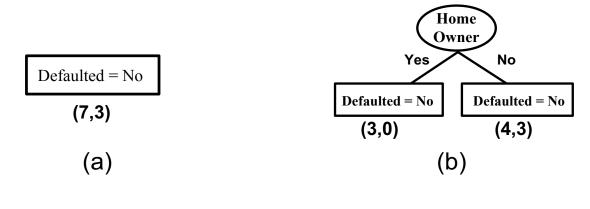
90K

Divorced

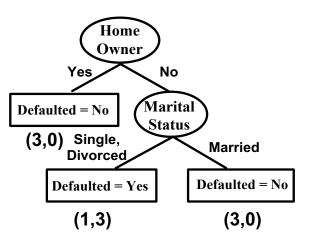
Single

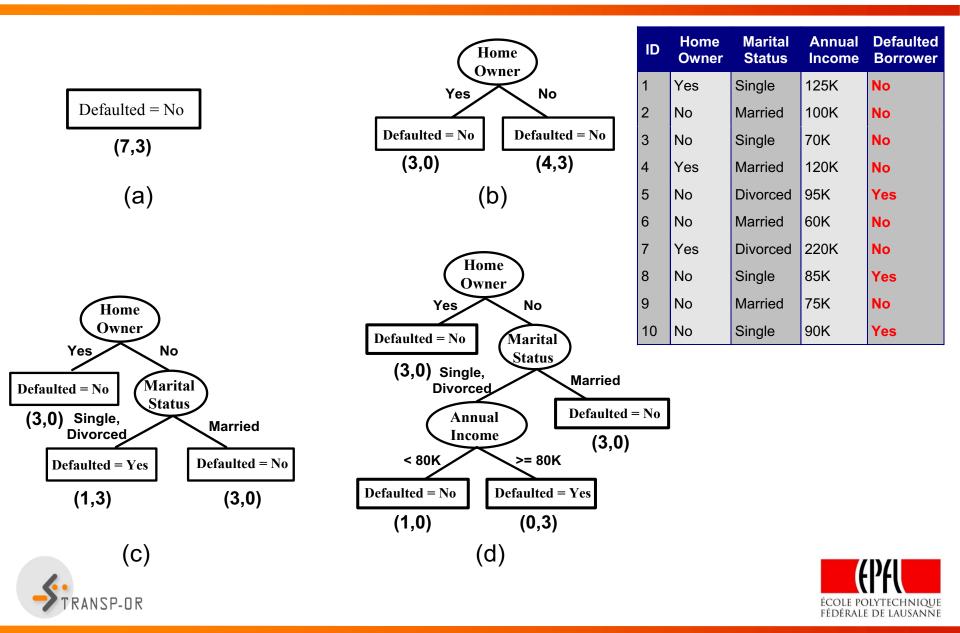
Married

Single



ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced 95K Ye		Yes	
6	No	Married 60K No		No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	





Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for determining possible test conditions
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values

Methods for Expressing Test Conditions

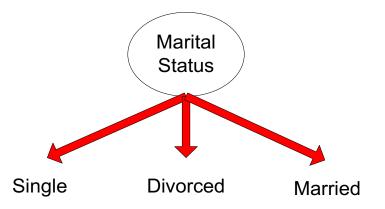
Depends on attribute types

- Binary
- Nominal
- Ordinal
- Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Test Condition for Nominal Attributes

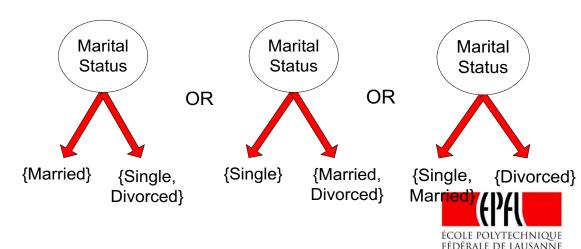
• Multi-way split:

 Use as many partitions as distinct values.



• Binary split:

Divides values into two subsets



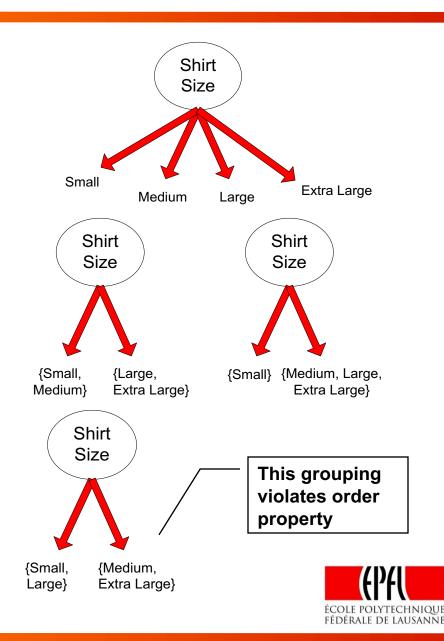
Test Condition for Ordinal Attributes

• Multi-way split:

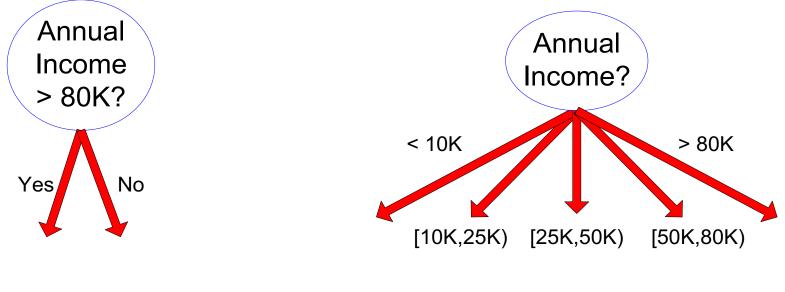
 Use as many partitions as distinct values

Binary split:

- Divides values into two subsets
- Preserve order
 property among
 attribute values



Test Condition for Continuous Attributes



(i) Binary split

(ii) Multi-way split

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

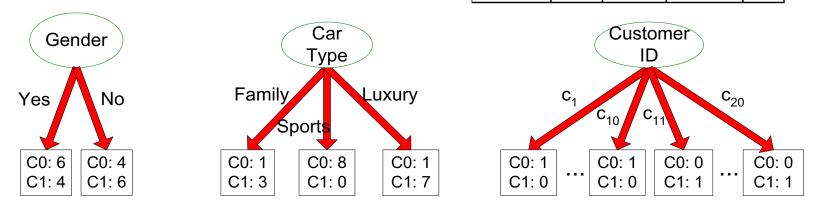
- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

How to determine the Best Split

Customer Id	Gender	Car Type	Shirt Size	Class
1	М	Family	Small	C0
2	Μ	Sports	Medium	C0
3	Μ	Sports	Medium	C0
4	Μ	Sports	Large	C0
5	Μ	Sports	Extra Large	C0
6	Μ	Sports	Extra Large	C0
7	\mathbf{F}	Sports	Small	C0
8	\mathbf{F}	Sports	Small	C0
9	\mathbf{F}	Sports	Medium	C0
10	\mathbf{F}	Luxury	Large	C0
11	Μ	Family	Large	C1
12	Μ	Family	Extra Large	C1
13	Μ	Family	Medium	C1
14	Μ	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	\mathbf{F}	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Before Splitting: 10 records of class 0, 10 records of class 1

SP-OR



Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 9 C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

• Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

Misclassification error

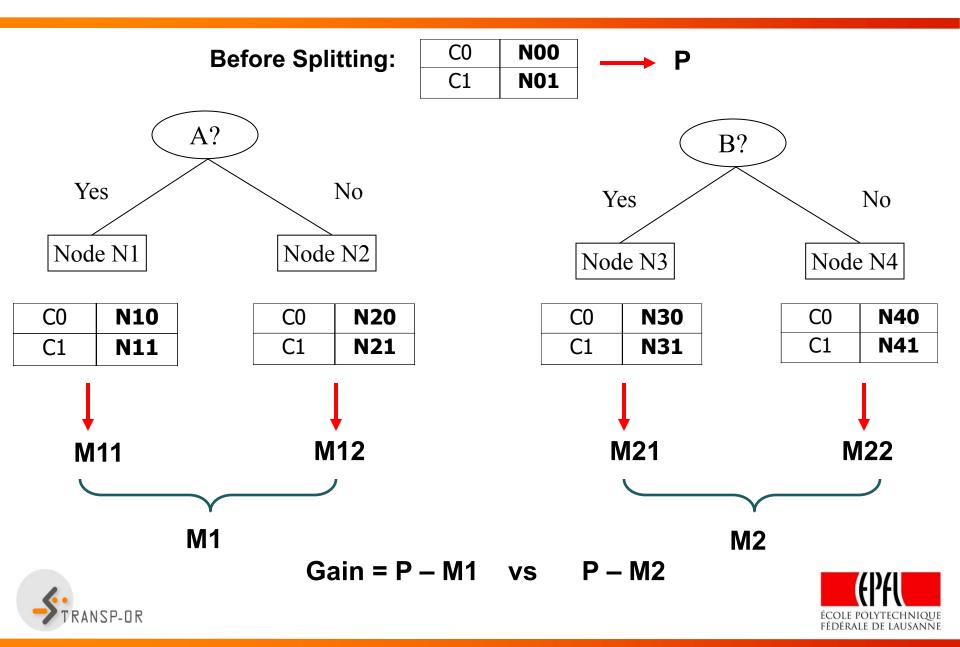
$$\overline{Error(t)} = 1 - \max_{i} P(i \mid t)$$

Finding the Best Split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node
 - M is the weighted impurity of children
- 3. Choose the attribute test condition that produces the highest gain

or equivalently, lowest impurity measure after splitting (M)

Finding the Best Split



Measure of Impurity: GINI

• Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Computing Gini Index of a Single Node

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Gini = 1 - $P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Gini = 1 - (1/6)² - (5/6)² = 0.278

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6Gini = 1 - (2/6)² - (4/6)² = 0.444

Computing Gini Index for a Collection of Nodes

• When a node p is split into k partitions (children)

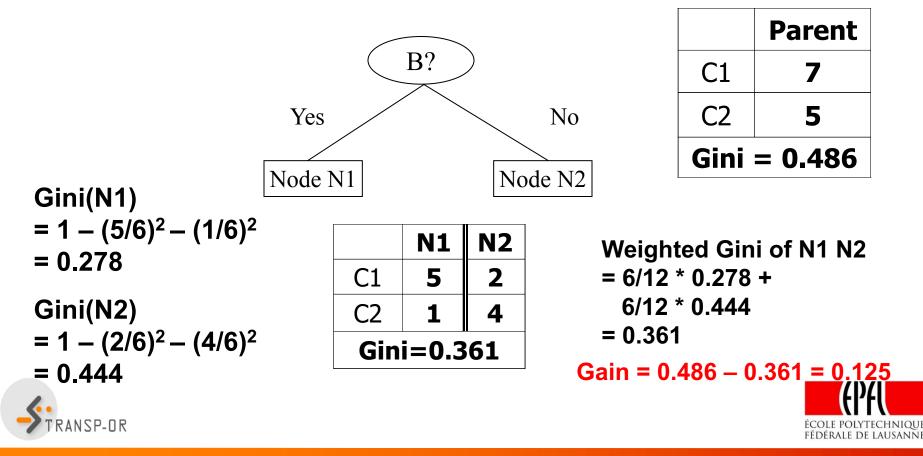
$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at parent node p.

- Choose the attribute that minimizes weighted average Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

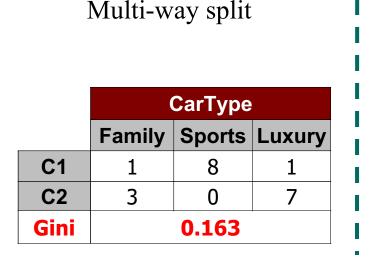
Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.



Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions



	CarType					
	{Sports, Luxury} {Family}					
C1	9	1				
C2	7 3					
Gini	0.468					

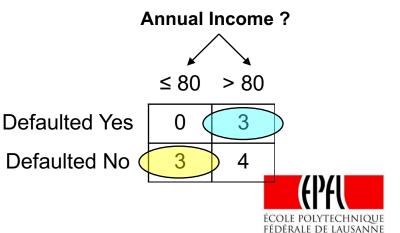
Two-way split

(find best partition of values)

	CarType						
	{Sports} {Family Luxury						
C1	8	2					
C2	0 10						
Gini	0.167						

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and $A \ge v$
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

ID	Home Owner	Marital Status	Annual Income	Defaulted
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



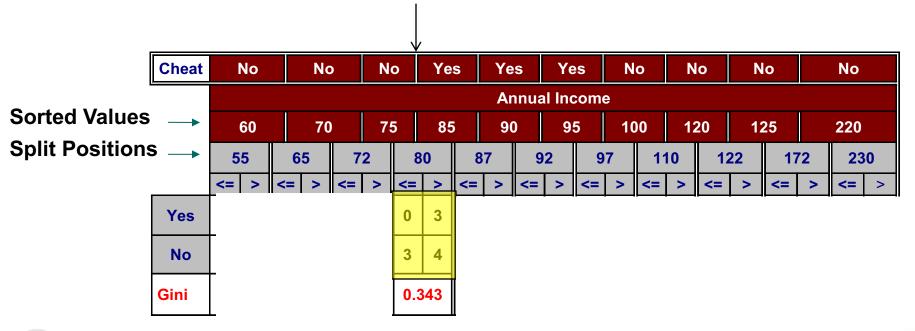
- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat	No	No	No	Yes	Yes	Yes	No	No	No	No
Sorted Values						Annua	al Incom	e			
		60	70	75	85	90	95	100	120	125	220

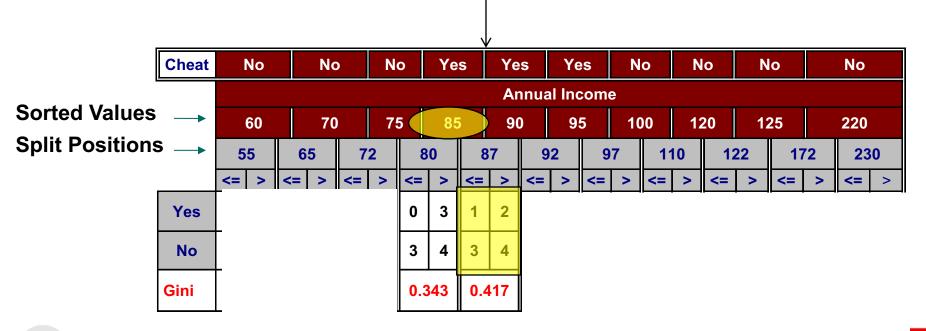
- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

[Cheat	No	Nc) N	o Ye	es Ye	es Y	es N	lo N	lo	No	No
• • • • • • • •	Annual Income											
Sorted Values	-	60	70	7	5 8	5 9	0 9	95 10	00 1:	20	125	220
Split Positions	S►	55	65	72	80	87	92	97	110	122	172	230
		<= >	<= >	<= >	<= >	<= >	<= >	<= >	<= >	<= >	<=	> <= >

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



FÉDÉRALE DE LAUSANNE

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		Nc)	N	0	Ye	S	Ye	S	Ye	es	N	0	N	0	N	0		No	
o (1)(1											Ar	nnua	al Inc	come)								
Sorted Values	-	1	60		70)	7	5	85	5	9()	9	5	10	00	1:	20	12	25		220	
Split Positions	3 — •	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	0
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	575	0.3	43	0.4	17	0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	575	0.4	00	0.4	20

Measure of Impurity: Entropy

• Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information

 Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

C1	1
C2	5

P(C1) = 1/6 P(C2) = 5/6Entropy = - (1/6) $\log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6 Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Computing Information Gain After Splitting

• Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

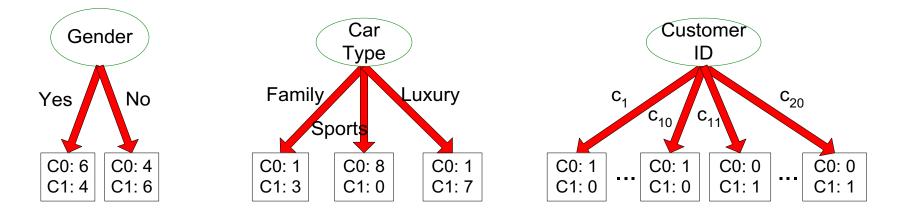
Parent Node, p is split into k partitions;

n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

Problem with large number of partitions

 Node impurity measures tend to prefer splits that result in large number of partitions, each being small but pure



 Customer ID has highest information gain because entropy for all the children is zero

Gain Ratio

• Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions

n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

Gain Ratio

• Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

	CarType					
	Family	Sports	Luxury			
C1	1	8	1			
C2	3	0	7			
Gini		0.163				

SplitINFO = 1.52

	CarType				
	{Sports, Luxury}	{Family}			
C1	9	1			
C2	7	3			
Gini	0.468				

SplitINFO = 0.72

	CarType				
	{Sports}	{Family, Luxury}			
C1	8	2			
C2	0	10			
Gini	0.167				

SplitINFO = 0.97

Measure of Impurity: Classification Error

• Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Error = 1 - max (0, 1) = 1 - 1 = 0

C1	1
C2	5

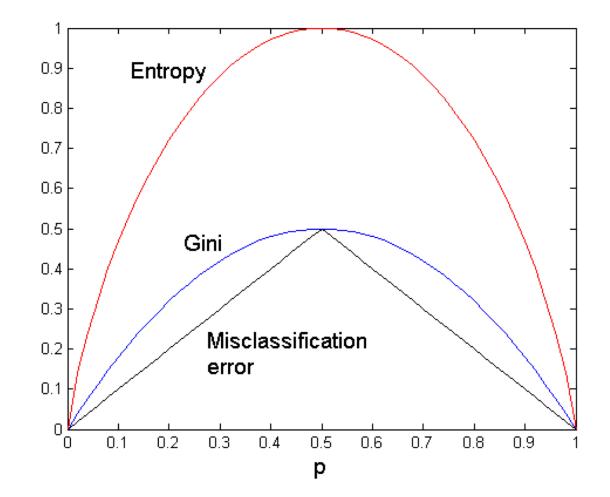
$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

C1	2
C2	4

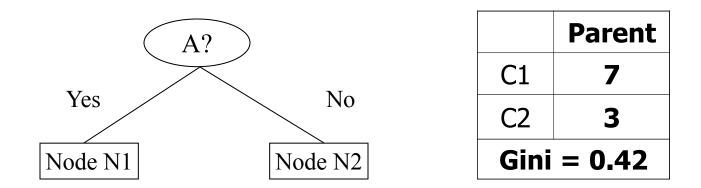
P(C1) = 2/6 P(C2) = 4/6Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

Comparison among Impurity Measures

For a 2-class problem:



Misclassification Error vs Gini Index



Gini(N1) = 1 - (3/3)² - (0/3)² = 0 Gini(N2)

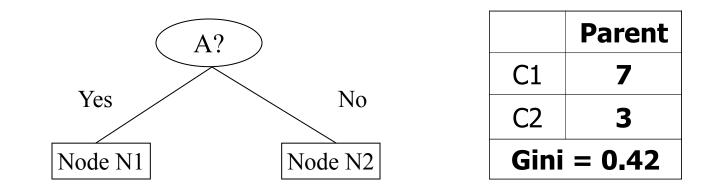
 $= 1 - (4/7)^2 - (3/7)^2$

Gini(Children)

Gini improves but error remains the same!!

= 0.489

Misclassification Error vs Gini Index



	N1	N2		N1	N2
C1	3	4	C1	3	4
C2	0	3	C2	1	2
Gin	i=0.3	342	Gin	i=0.4	16

Misclassification error for all three cases = 0.3!

Pruning

- After building the decision tree, a tree-pruning step can be performed to reduce the size of the decision tree.
- Too large decision trees are susceptible to overfitting.
- Pruning helps by trimming the branches of the initial tree in a way that improves the generalization capability of the decision tree.

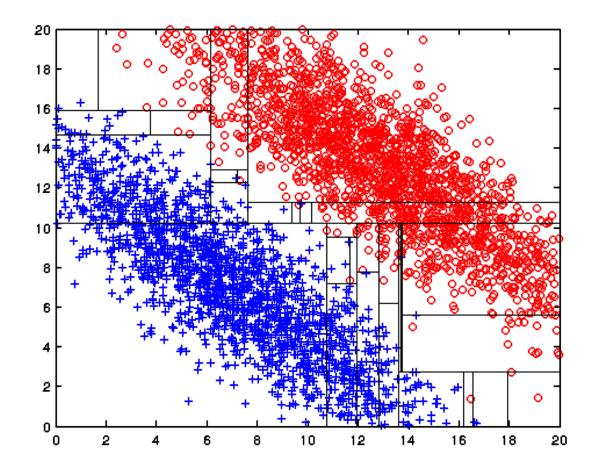
Classification error estimation

- Cross-validation
 - Data is segmented into k equal-sized partitions
 - During each run, one of the partitions is chosen for testing, while the rest of them are used for training
 - This procedure is repeated k times so that each partition is used for testing exactly once.
 - The total error is found by summing up the errors for all k runs

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Handles by construction the redundant or irrelevant attributes
- Disadvantages:
 - Space of possible decision trees is exponentially large.
 Greedy approaches are often unable to find the best tree.
 - Each decision boundary involves only a single attribute



Both positive (+) and negative (o) classes generated from skewed Gaussians with centers at (8,8) and (14,14) respectively.

Case Study

- Feyza Gürbüz, Lale Özbakir, Hüseyin Yapici : Classification rule discovery for the aviation incidents resulted in fatality, <u>https://doi.org/10.1016/j.knosys.2009.06.013</u>
- Analysis of incident reports (data records) in civil aviation, spanning over 7 years
- Goal: find rules in fatality-ending incidents and reduce the number of fatalities
 - By finding relations between incident features and number of fatalities
- An example of using a decision tree classifier (skip the details regarding the rough sets)

Main references

• P.-N. Tan, M. Steinbach, A. Karpatne, V. Kumar: Introduction to Data Mining, 2nd Edition, 2006, Pearson Education Inc.

