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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)

● Model is an assembly of 
inter-connected nodes 
and weighted links

● Output node sums up 
each of its input value 
according to the weights 
of its links

● Compare output node 
against some threshold t
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General Structure of ANN
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Artificial Neural Networks (ANN)

● Various types of neural network topology
– single-layered network (perceptron) versus 

multi-layered network
– Feed-forward versus recurrent network

● Various types of 
activation functions (f)
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Perceptron

● Single layer network
– Contains only input and output nodes

● Activation function:  f = sign(w•x)

● Applying model is straightforward

– X1 = 1, X2 = 0, X3 =1 => y = sign(0.2) = 1
î
í
ì

<-
³

=

-++=

 0   if1
0  if1

)( where

)4.03.03.03.0( 321

x
x

xsign

XXXsignY



Perceptron Learning Rule

● Initialize the weights (w0, w1, …, wd)
● Repeat

– For each training example (xi, yi)
u Compute f(w, xi)
u Update the weights: 

● Until stopping condition is met
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Perceptron Learning Rule

● Weight update formula:

● Intuition:
– Update weight based on error:  
– If y=f(x,w), e=0: no update needed
– If y>f(x,w), e>0: weight must be increased so 

that f(x,w) will increase
– If y<f(x,w), e<0: weight must be decreased so 

that f(x,w) will decrease
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Example of Perceptron Learning
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Epoch w0 w1 w2 w3
0 0 0 0 0
1 -0.2 0 0.2 0.2
2 -0.2 0 0.4 0.2
3 -0.4 0 0.4 0.2
4 -0.4 0.2 0.4 0.4
5 -0.6 0.2 0.4 0.2
6 -0.6 0.4 0.4 0.2

1.0=l
 w0 w1 w2 w3
0 0 0 0 0
1 -0.2 -0.2 0 0
2 0 0 0 0.2
3 0 0 0 0.2
4 0 0 0 0.2
5 -0.2 0 0 0
6 -0.2 0 0 0
7 0 0 0.2 0.2
8 -0.2 0 0.2 0.2



Perceptron Learning Rule

● Since f(w,x) is a linear 
combination of input 
variables, decision 
boundary is linear

● For nonlinearly separable problems, perceptron 
learning algorithm will fail because no linear 
hyperplane can separate the data perfectly 



Nonlinearly Separable Data
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Multilayer Neural Network

● Hidden layers
– intermediary layers between input & output 

layers

● More general activation functions (sigmoid, linear, 
etc)



Multi-layer Neural Network

● Multi-layer neural network can solve any type of 
classification task involving nonlinear decision 
surfaces
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Learning Multi-layer Neural Network

● Can we apply perceptron learning rule to each 
node, including hidden nodes?
– Perceptron learning rule computes error term 

e = y-f(w,x) and updates weights accordingly
u Problem: how to determine the true value of y for 

hidden nodes?
– Approximate error in hidden nodes by error in 

the output nodes
u Problem: 

– Not clear how adjustment in the hidden nodes affect overall 
error 

– No guarantee of convergence to optimal solution



Gradient Descent for Perceptron

● Weight update:

● Error function:

● Activation function f must be differentiable

● For sigmoid function:

● Stochastic gradient descent (update the weight 
immediately)
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Gradient Descent for MultiLayer NN

● For output neurons, 
weight update formula is 
the same as before 
(gradient descent for 
perceptron)

● For hidden neurons:
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Design Issues in ANN

● Number of nodes in input layer 
– One input node per binary/continuous attribute
– k or log2 k nodes for each categorical attribute 

with k values
● Number of nodes in output layer

– One output for binary class problem
– k or log2 k nodes for k-class problem

● Number of nodes in hidden layer
● Initial weights and biases



Characteristics of ANN

● Multilayer ANN are universal approximators but could 
suffer from overfitting if the network is too large

● Gradient descent may converge to local minimum
● Model building can be very time consuming, but testing 

can be very fast 
● Can handle redundant attributes because weights are 

automatically learnt
● Sensitive to noise in training data
● Difficult to handle missing attributes



Recent Noteworthy Developments in ANN

● Google Brain project 
– Learned the concept of a ‘cat’ by looking at 

unlabeled pictures from YouTube
– One billion connection network



Case study

● M. S. Dougherty, M. R. Cobbett: Short-term inter-urban 
traffic forecasts using neural networks, 
https://doi.org/10.1016/S0169-2070(96)00697-8
– Short-term forecast of traffic flow , speed and 

occupancy 
uAlso used as input data

– Challenges: 
uSelection of input features
uNeural network size impractical for real-time use

– Input features selection – elasticity analysis
● What improved algorithm results to a great extent?
● How is the curse of dimensionality defined in this paper?



Confusion Matrix

● Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)



Accuracy

● Most widely-used metric:

PREDICTED CLASS

ACTUAL
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Class Imbalance Problem

● Lots of classification problems where the classes 
are skewed (more records from one class than 
another)
– Credit card fraud
– Intrusion detection
– Defective products in manufacturing assembly 

line



Challenges

● Evaluation measures such as accuracy is not 
well-suited for imbalanced class

● Detecting the rare class is like finding needle in a 
haystack



Problem with Accuracy

● Consider a 2-class problem
– Number of Class NO examples = 990
– Number of Class YES examples = 10

● If a model predicts everything to be class NO, 
accuracy is 990/1000 = 99 %
– This is misleading because the model does 

not detect any class YES example
– Detecting the rare class is usually more 

interesting (e.g., frauds, intrusions, defects, 
etc)



Alternative Measures
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Alternative Measures
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Alternative Measures
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Alternative Measures
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Alternative Measures
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Measures of Classification Performance

PREDICTED CLASS

ACTUAL
CLASS

Yes No

Yes TP FN
No FP TN

a is the probability that we reject 
the null hypothesis when it is 
true. This is a Type I error or a 
false positive (FP).

b is the probability that we 
accept the null hypothesis when 
it is false. This is a Type II error 
or a false negative (FN). 



Alternative Measures
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