#### CIVIL-557 Decision Aid Methodologies In Transportation

#### Lecture 12: Data Mining in Transport – Artificial Neural Networks

#### Nikola Obrenovic

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL





#### Acknowledgement

- The content of these slides has been partially taken over from the official slides accompanying the book: P.-N.Tan, M. Steinbach, A. Karpatne, V. Kumar: Introduction to Data Mining (2<sup>nd</sup> Edition)
- https://www-users.cs.umn.edu/~kumar001/dmbook/index.php









Output Y is 1 if at least two of the three inputs are equal to 1.







$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$
  
where  $sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$ 





- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t





### **General Structure of ANN**







Various types of neural network topology

- single-layered network (perceptron) versus multi-layered network
- Feed-forward versus recurrent network
- Various types of activation functions (f)

$$Y = f(\sum_{i} w_i X_i)$$



#### Perceptron

#### Single layer network

Contains only input and output nodes

Applying model is straightforward

$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$
  
where  $sign(x) = \begin{cases} 1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0 \end{cases}$ 

 $- X_1 = 1, X_2 = 0, X_3 = 1 => y = sign(0.2) = 1$ 





## **Perceptron Learning Rule**

- Initialize the weights  $(w_0, w_1, ..., w_d)$
- Repeat
  - For each training example  $(x_i, y_i)$ 
    - Compute f(w, x<sub>i</sub>)
    - Update the weights:

$$w^{(k+1)} = w^{(k)} + \lambda [y_i - f(w^{(k)}, x_i)] x_i$$

Until stopping condition is met





## **Perceptron Learning Rule**

Weight update formula:

$$w^{(k+1)} = w^{(k)} + \lambda \left[ y_i - f(w^{(k)}, x_i) \right] x_i \quad ; \quad \lambda : \text{learning rate}$$

#### Intuition:

- Update weight based on error:  $e = [y_i f(w^{(k)}, x_i)]$
- If y=f(x,w), e=0: no update needed
- If y>f(x,w), e>0: weight must be increased so that f(x,w) will increase
- If y<f(x,w), e<0: weight must be decreased so that f(x,w) will decrease





## **Example of Perceptron Learning**

$$w^{(k+1)} = w^{(k)} + \lambda [y_i - f(w^{(k)}, x_i)] x_i$$

$$Y = sign(\sum_{i=0}^{n} w_i X_i)$$

 $\lambda = 0.1$ 

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | $X_3$ | Y  |
|-----------------------|----------------|-------|----|
| 1                     | 0              | 0     | -1 |
| 1                     | 0              | 1     | 1  |
| 1                     | 1              | 0     | 1  |
| 1                     | 1              | 1     | 1  |
| 0                     | 0              | 1     | -1 |
| 0                     | 1              | 0     | -1 |
| 0                     | 1              | 1     | 1  |
| 0                     | 0              | 0     | -1 |

|   | <b>W</b> <sub>0</sub> | <b>W</b> <sub>1</sub> | W2  | <b>W</b> <sub>3</sub> |
|---|-----------------------|-----------------------|-----|-----------------------|
| 0 | 0                     | 0                     | 0   | 0                     |
| 1 | -0.2                  | -0.2                  | 0   | 0                     |
| 2 | 0                     | 0                     | 0   | 0.2                   |
| 3 | 0                     | 0                     | 0   | 0.2                   |
| 4 | 0                     | 0                     | 0   | 0.2                   |
| 5 | -0.2                  | 0                     | 0   | 0                     |
| 6 | -0.2                  | 0                     | 0   | 0                     |
| 7 | 0                     | 0                     | 0.2 | 0.2                   |
| 8 | -0.2                  | 0                     | 0.2 | 0.2                   |

| Epoch | W <sub>0</sub> | <b>W</b> <sub>1</sub> | <b>W</b> <sub>2</sub> | <b>W</b> <sub>3</sub> |
|-------|----------------|-----------------------|-----------------------|-----------------------|
| 0     | 0              | 0                     | 0                     | 0                     |
| 1     | -0.2           | 0                     | 0.2                   | 0.2                   |
| 2     | -0.2           | 0                     | 0.4                   | 0.2                   |
| 3     | -0.4           | 0                     | 0.4                   | 0.2                   |
| 4     | -0.4           | 0.2                   | 0.4                   | 0.4                   |
| 5     | -0.6           | 0.2                   | 0.4                   | 0.2                   |
| 6     | -0.6           | 0.4                   | 0.4                   | 0.2                   |





## **Perceptron Learning Rule**

 Since f(w,x) is a linear combination of input variables, decision boundary is linear



 For nonlinearly separable problems, perceptron learning algorithm will fail because no linear hyperplane can separate the data perfectly





#### **Nonlinearly Separable Data**



ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

STRANSP-OR

## **Multilayer Neural Network**

#### Hidden layers

intermediary layers between input & output layers

More general activation functions (sigmoid, linear, etc)





## **Multi-layer Neural Network**

 Multi-layer neural network can solve any type of classification task involving nonlinear decision surfaces









## Learning Multi-layer Neural Network

- Can we apply perceptron learning rule to each node, including hidden nodes?
  - Perceptron learning rule computes error term
     e = y-f(w,x) and updates weights accordingly
    - Problem: how to determine the true value of y for hidden nodes?
  - Approximate error in hidden nodes by error in the output nodes
    - Problem:
      - Not clear how adjustment in the hidden nodes affect overall error
      - No guarantee of convergence to optimal solution





### **Gradient Descent for Perceptron**

• Weight update: 
$$w_j^{(k+1)} = w_j^{(k)} - \lambda \frac{\partial E}{\partial w_j}$$
  
• Error function:  $E = \frac{1}{2} \sum_{i=1}^{N} \left( t_i - f(\sum_j w_j x_{ij}) \right)^2$ 

- Activation function f must be differentiable
- For sigmoid function:

$$w_{j}^{(k+1)} = w_{j}^{(k)} + \lambda \sum_{i} (t_{i} - o_{i}) o_{i} (1 - o_{i}) x_{ij}$$

Stochastic gradient descent (update the weight immediately)



## **Gradient Descent for MultiLayer NN**

 For output neurons, weight update formula is the same as before (gradient descent for perceptron)



• For hidden neurons:

$$w_{pi}^{(k+1)} = w_{pi}^{(k)} + \lambda o_i (1 - o_i) \sum_{j \in \Phi_i} \delta_j w_{ij} x_{pi}$$
  
Output neurons :  $\delta_j = o_j (1 - o_j) (t_j - o_j)$   
Hidden neurons :  $\delta_j = o_j (1 - o_j) \sum_{k \in \Phi_j} \delta_k w_{jk}$ 



## **Design Issues in ANN**

- Number of nodes in input layer
  - One input node per binary/continuous attribute
  - k or log<sub>2</sub> k nodes for each categorical attribute with k values
- Number of nodes in output layer
  - One output for binary class problem
  - k or log<sub>2</sub> k nodes for k-class problem
- Number of nodes in hidden layer
- Initial weights and biases





## **Characteristics of ANN**

- Multilayer ANN are universal approximators but could suffer from overfitting if the network is too large
- Gradient descent may converge to local minimum
- Model building can be very time consuming, but testing can be very fast
- Can handle redundant attributes because weights are automatically learnt
- Sensitive to noise in training data
- Difficult to handle missing attributes





#### **Recent Noteworthy Developments in ANN**

- Google Brain project
  - Learned the concept of a 'cat' by looking at unlabeled pictures from YouTube
  - One billion connection network





## **Case study**

- M. S. Dougherty, M. R. Cobbett: Short-term inter-urban traffic forecasts using neural networks, https://doi.org/10.1016/S0169-2070(96)00697-8
  - Short-term forecast of traffic flow , speed and occupancy
    - Also used as input data
  - Challenges:
    - Selection of input features
    - Neural network size impractical for real-time use
  - Input features selection elasticity analysis
- What improved algorithm results to a great extent?
- How is the curse of dimensionality defined in this paper?



## **Confusion Matrix**

#### Confusion Matrix:

|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | а         | b        |  |
| CLASS  | Class=No        | С         | d        |  |

- a: TP (true positive)
- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)





#### Accuracy

|        | PREDICTED CLASS |           |           |  |
|--------|-----------------|-----------|-----------|--|
|        |                 | Class=Yes | Class=No  |  |
| ACTUAL | Class=Yes       | a<br>(TP) | b<br>(FN) |  |
| ULASS  | Class=No        | с<br>(FP) | d<br>(TN) |  |

Most widely-used metric:

Accuracy = 
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$





## **Class Imbalance Problem**

- Lots of classification problems where the classes are skewed (more records from one class than another)
  - Credit card fraud
  - Intrusion detection
  - Defective products in manufacturing assembly line





## Challenges

- Evaluation measures such as accuracy is not well-suited for imbalanced class
- Detecting the rare class is like finding needle in a haystack





## **Problem with Accuracy**

#### Consider a 2-class problem

- Number of Class NO examples = 990
- Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
  - This is misleading because the model does not detect any class YES example
  - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)





|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAI | Class=Yes       | а         | b        |  |
| CLASS  | Class=No        | С         | d        |  |

Precision (p) = 
$$\frac{a}{a+c}$$

Recall (r) = 
$$\frac{a}{a+b}$$
  
 $a = 2rp = 2$ 

F - measure (F) = 
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$





|        | PREDICTED CLASS |           |          |
|--------|-----------------|-----------|----------|
|        |                 | Class=Yes | Class=No |
| ACTUAL | Class=Yes       | 10        | 0        |
| CLASS  | Class=No        | 10        | 980      |

Precision (p) = 
$$\frac{10}{10+10} = 0.5$$
  
Recall (r) =  $\frac{10}{10+0} = 1$   
F - measure (F) =  $\frac{2*1*0.5}{1+0.5} = 0.62$   
Accuracy =  $\frac{990}{1000} = 0.99$ 





|        | PREDICTED CLASS |           |          |
|--------|-----------------|-----------|----------|
|        |                 | Class=Yes | Class=No |
| ACTUAL | Class=Yes       | 10        | 0        |
| CLASS  | Class=No        | 10        | 980      |

Precision (p) = 
$$\frac{10}{10+10} = 0.5$$
  
Recall (r) =  $\frac{10}{10+0} = 1$   
F - measure (F) =  $\frac{2*1*0.5}{1+0.5} = 0.62$   
Accuracy =  $\frac{990}{1000} = 0.99$ 

|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | 1         | 9        |  |
| CLASS  | Class=No        | 0         | 990      |  |

SP-OR

Precision (p) = 
$$\frac{1}{1+0} = 1$$
  
Recall (r) =  $\frac{1}{1+9} = 0.1$   
F - measure (F) =  $\frac{2*0.1*1}{1+0.1} = 0.18$   
Accuracy =  $\frac{991}{1000} = 0.991$ 

FÉDÉRALE DE LAUSANNE

|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | 40        | 10       |  |
| CLASS  | Class=No        | 10        | 40       |  |

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8





|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | 40        | 10       |  |
| CLASS  | Class=No        | 10        | 40       |  |

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8

|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | 40        | 10       |  |
| CLASS  | Class=No        | 1000      | 4000     |  |

Precision (p) =~ 0.04 Recall (r) = 0.8 F - measure (F) =~ 0.08 Accuracy =~ 0.8





## **Measures of Classification Performance**

|                 | PREDICTED CLASS |     |    |  |  |  |
|-----------------|-----------------|-----|----|--|--|--|
| ACTUAL<br>CLASS |                 | Yes | No |  |  |  |
|                 | Yes             | TP  | FN |  |  |  |
|                 | No              | FP  | TN |  |  |  |

 $\alpha$  is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 $\beta$  is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

ErrorRate = 1 - accuracy

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN Rate = \frac{TN}{TN + FP}$$

$$FP \ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

*Power* = *sensitivity* =  $1 - \beta$ 





|                 | PREDICTED CLASS |           |          |  |
|-----------------|-----------------|-----------|----------|--|
|                 |                 | Class=Yes | Class=No |  |
| ACTUAL<br>CLASS | Class=Yes       | 40        | 10       |  |
|                 | Class=No        | 10        | 40       |  |

Precision (p) = 0.8TPR = Recall (r) = 0.8FPR = 0.2F - measure (F) = 0.8Accuracy = 0.8

|                 | PREDICTED CLASS |           |          |  |
|-----------------|-----------------|-----------|----------|--|
|                 |                 | Class=Yes | Class=No |  |
| ACTUAL<br>CLASS | Class=Yes       | 40        | 10       |  |
|                 | Class=No        | 1000      | 4000     |  |

Precision (p) =~ 0.04 TPR = Recall (r) = 0.8 FPR = 0.2 F - measure (F) =~ 0.08 Accuracy =~ 0.8





## **Main references**

• P.-N. Tan, M. Steinbach, A. Karpatne, V. Kumar: Introduction to Data Mining, 2nd Edition, 2006, Pearson Education Inc.



