EPFL

ENAC TRANSP-OR

Prof. M. Bierlaire

Gael Lederrey & Nikola Obrenovic

Decision Aids T R A N S P- D R

Spring 2018

DATA MINING I - CLASSIFICATION - EXERCISES

For the classification exercises, you will work with two artificial datasets. These two datasets have been
created so that they have a linear separation and a non-linear separation. You goal is to implement
two algorithms (Logisitic Regression and k-NN) and test them on these two datasets. You can change
the datasets by commenting lines 13-14 and uncommenting lines 16-17 in the files exercisel.m and
exercise2.m.

Exercise 1

In this exercise, you will implement the logistic classification algorithm. Here are the steps you need
to follow:

1. Run the file exercise0.m to have a look at the artificial data you will be using for this exercise
set.

2. In the file computeCostAndGrad.m, you need to compute the cost and the gradient. The cost is
given by:

N
L= —% Zzlyl . log(hg(xi)) + (1 - yl) ' log(l - hg(xz))

where x; is the vector of feature for sample i, y; is the label for sample 7, N is the number of
samples, and hg(x) is the hypothesis function. In our case, we have a sigmoid function o and
hg(xz) = (0 - ) where 6 corresponds to the weights vector.

The k-th element of the gradient is defined by:

oL
VL), = —
You need to compute the derivation by yourself.
Hints:
e The derivation of the sigmoid function is given by:
d
W) — ow) - (1 - o)

e You can already run the file exercisel.m at this point to verify if your implemen-
tation is correct. However, it will throw an error at line 49. Nevertheless, you
should still be able to see the separation between the data.

e You can implement it with 5 lines of code.

3. The final step is to fill the file predict.m with the function prediction that will be used. Once
it is done, you can run the file exercisel.m and get the accuracy of your classification.

Hint:
e Do not forget to use the sigmoid function o for the prediction and round the values.

o You can implement it with 3 lines of code.

1



[y

Exercise 2

In this exercise, you will implement the k-Nearest Neighbours algorithm. You can find the pseudo-code
for this algorithm in Algorithm 77.

Algorithm 1: k-NN algorithm

Result: Returns the predicted labels on the test data based on the train data

Input : train, labels, test, k

Output: predicted_labels

Prepare the arrays to return the results
/* Your implementation starts here x/
foreach ¢ < 1 to #test_samples do

Compute distance between test sample ¢ with all train samples

Sort the distances from smallest to largest

Retrieve the k closest train samples from test sample 4

For each unique label, compute the number of times it appears in the k£ neighbours

Set the predicted label as the label that is the most represented amongst the k neighbours
end

You have to implement this algorithm in the file knn.m. Once it is done, you can test the algorithm
by using the file exercise2.m. Do not forget to add (and change) the number of neighbours on line
28 of the file exercise2.m.

Hint:

e The function hist from Matlab is useful to know which labels appear the most.

o You can implement this with 6 lines of code.



