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Model specification

Example

Data

Unit of analysis: travelers (simulated observations)

Choice set: choice of car (C) or transit (T)

Independent variable: travel time

Ben-Akiva & Lerman (1985) Discrete Choice Analysis: Theory and

Applications to Travel Demand, MIT Press (p.88)
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Model specification

Example

Data from 21 decision makers

Time Time Time Time
# auto transit Choice # auto transit Choice

1 52.9 4.4 T 11 99.1 8.4 T
2 4.1 28.5 T 12 18.5 84.0 C
3 4.1 86.9 C 13 82.0 38.0 C
4 56.2 31.6 T 14 8.6 1.6 T
5 51.8 20.2 T 15 22.5 74.1 C
6 0.2 91.2 C 16 51.4 83.8 C
7 27.6 79.7 C 17 81.0 19.2 T
8 89.9 2.2 T 18 51.0 85.0 C
9 41.5 24.5 T 19 62.2 90.1 C

10 95.0 43.5 T 20 95.1 22.2 T
21 41.6 91.5 C
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Model specification

Binary choice model

Specification of utility functions

UC = β1TC + εC
UT = β1TT + εT

where TC is the travel time by car (min) and TT the travel time by transit
(min).

Choice model

P(C |{C ,T}) = P(UC ≥ UT )
= P(β1TC + εC ≥ β1TT + εT )
= P(β1TC − β1TT ≥ εT − εC )
= P (ε ≤ β1(TC − TT ))

where ε = εT − εC .
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Model specification

Error term

Three questions about the random variables εT and εC
1 What’s their distribution?
2 What’s their moments:

1 Mean?
2 Variance?

Note

For binary choice it is sufficient to make assumptions about ε = εT − εC
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Model specification

First-order moment: mean

Note

Adding the same constant µ to all utility functions does not affect the
choice model

Pr(UC ≥ UT ) = Pr(UC + µ ≥ UT + µ) ∀µ ∈ R.

Why?

An utility function is defined up to a monotone increasing transformation.
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Model specification

First-order moment: mean, cont.

Change of variables

Assume that E[εC ] = βC and E[εT ] = βT .

Define ε′C = εC − βC and ε′T = εT − βT ,

so that E[ε′C ] = E[ε′T ] = 0.

Choice model

P(C |{C ,T}) =

Pr(β1(TC − TT ) ≥ εT − εC ) =
Pr(β1(TC − TT ) ≥ ε′T + βT − ε′C − βC ) =
Pr(β1(TC − TT ) + (βC − βT ) ≥ ε′T − ε′C ) =
Pr(β1(TC − TT ) + β0 ≥ ε′)

where β0 = βC − βT and ε′ = ε′T − ε′C .
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Model specification

First-order moment: mean, cont.

Mean

The mean of ε can be included as a parameter of the deterministic
part of utility

Only the mean of the difference of the error terms is meaningful

Alternative Specific Constant (ASC)

UC = β1TC +εC
UT = β1TT + β0 +εT

or
UC = β1TC − β0 +εC
UT = β1TT +εT

In practice, one needs to associate an ASC with all alternatives but one:
exclusion constraint to define a one-to-one mapping between vector of
parameters and choice probabilities
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Model specification

Second-order moment: the variance

Utility is ordinal

Utilities can be scaled up or down without changing the choice probability

Pr(UC ≥ UT ) = Pr(αUC ≥ αUT ) ∀α > 0

Repeat once more!

A utility function is defined up to a monotone increasing transformation.

Link with the variance

Var(αUC ) = α2 Var(UC )
Var(αUT ) = α2 Var(UT )

Variance is not identified

As any α can be selected arbitrarily, any variance can be assumed.

No way to identify the variance of the error terms from data.

The scale has to be arbitrarily defined: normalization constraint to
define a one-to-one mapping between vector of parameters and choice
probabilities
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Model specification

Practical summary

Only difference in levels of utility matters

It is not possible to estimate all ASC but only their differences. Choose
arbitrarily one of the ASCs as reference and fix it to 0: estimated
differences of ASCs are wrt to this reference

Scale is arbitrary

It means for a linear utility function that the values of the parameters are
not sensible.
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Model specification

The normal distribution

Assumption 1

εT and εC are the sum of many r.v. capturing unobservable attributes
(e.g. mood, experience), measurement and specification errors.

Central-limit theorem

The sum of many i.i.d. random variables approximately follows a normal
distribution: N(µ, σ2).

Assumed distribution

εC ∼ N(0, 1), εT ∼ N(0, 1), εC ⊥ εT
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Model specification

The normal distribution, cont.

Probability density function
(pdf):

f (t) =
1

σ
√

2π
e−

(t−µ)2

2σ2

Cumulative distribution function
(CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞
f (t)dt

No closed form

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-3 -2 -1  0  1  2  3

U
ti
lit

y

Time

c * exp(-x*x/2.0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-3 -2 -1  0  1  2  3

U
ti
lit

y

Time

norm(x)

Transport and Mobility Laboratory Decision-Aid Methodologies 03 May 2016 13 / 52



Model specification

The normal distribution, cont.

ε = εT − εC
From the properties of the normal distribution, we have

εC ∼ N(0, 1)
εT ∼ N(0, 1)

ε = εT − εC ∼ N(0, 2)

As the variance is arbitrary, we may also assume

εC ∼ N(0, 0.5)
εT ∼ N(0, 0.5)

ε = εT − εC ∼ N(0, 1)
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Model specification

The binary probit model

Choice model

P(C |{C ,T}) = Pr(β1(TC − TT ) + β0 ≥ ε) = Fε(β1(TC − TT ) + β0)

The binary probit model

P(C |{C ,T}) =
1√
2π

∫ β1(TC−TT )−β0

−∞
e−

1
2
t2
dt

Not a closed form expression
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Model specification

The binary probit model

The distribution

If the error terms are assumed to follow a normal distribution, the
corresponding model is called

Probability Unit Model or Probit Model.
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Model specification

The Gumbel distribution

Assumption 2

εT and εC are the maximum of many r.v. capturing unobservable
attributes (e.g. mood, experience), measurement and specification errors.

Gumbel theorem

The maximum of many i.i.d. random variables approximately follows an
Extreme Value distribution: EV(η, µ).

Assumed distribution

εC ∼ EV(0, 1), εT ∼ EV(0, 1), εC ⊥ εT
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Model specification

The type 1 Extreme Value distribution EV1(η, µ)

Probability density function (pdf)

f (t) = µe−µ(t−η)e−e
−µ(t−η)

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞
f (t)dt

= e−e
−µ(c−η)
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Model specification

The type 1 Extreme Value distribution
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Model specification

The type 1 Extreme Value distribution

Properties

If
ε ∼ EV(η, µ)

then

E[ε] = η +
γ

µ
and Var[ε] =

π2

6µ2

where γ is Euler’s constant.

Euler’s constant

γ = lim
k→∞

k∑
i=1

1

i
− ln k = −

∫ ∞
0

e−x ln xdx ≈ 0.5772
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Model specification

Difference of independent type 1 Extreme Value
distributions

ε = εT − εC
From the properties of the extreme value distribution, we have

εC ∼ EV(0, 1)
εT ∼ EV(0, 1)
ε ∼ Logistic(0, 1)
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Model specification

The Logistic distribution: Logistic(η,µ)

Probability density function (pdf)

f (t) =
µe−µ(t−η)

(1 + e−µ(t−η))2

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞
f (t)dt =

1

1 + e−µ(c−η)

with µ > 0.
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Model specification

The binary logit model

Choice model

P(C |{C ,T}) = Pr(β1(TC − TT ) + β0 ≥ ε) = Fε(β1(TC − TT ) + β0)

The binary logit model

P(C |{C ,T}) =
1

1 + e−(β1(TC−TT )+β0)
=

eβ1TC+β0

eβ1TC+β0 + eβ1TT

The binary logit model

P(C |{C ,T}) =
eVC

eVC + eVT
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Model specification

Logit curve

Vin-Vjn 

Pn(i) 

0 

1 

logit curve for non-
limiting cases 
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Model specification

Logit curve: limiting cases

Scale ⟶ 0  
P=0.5 

Vin-Vjn 

Pn(i) 

0 

1 Scale ⟶ ∞ deterministic 

logit curve for non-
limiting cases 
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Applying the model

Back to the example

Remember the data from our 21 decision makers?

Time Time Time Time
# auto transit Choice # auto transit Choice

1 52.9 4.4 T 11 99.1 8.4 T
2 4.1 28.5 T 12 18.5 84.0 C
3 4.1 86.9 C 13 82.0 38.0 C
4 56.2 31.6 T 14 8.6 1.6 T
5 51.8 20.2 T 15 22.5 74.1 C
6 0.2 91.2 C 16 51.4 83.8 C
7 27.6 79.7 C 17 81.0 19.2 T
8 89.9 2.2 T 18 51.0 85.0 C
9 41.5 24.5 T 19 62.2 90.1 C

10 95.0 43.5 T 20 95.1 22.2 T
21 41.6 91.5 C
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Applying the model

First individual

Parameters

Let’s assume that β0 = 0.5 and β1 = −0.1

Variables

Let’s consider the first observation:

TC1 = 52.9

TT1 = 4.4

Choice = transit: yauto,1 = 0, ytransit,1 = 1

Choice

What’s the probability given by the model that this individual indeed
chooses transit?
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Applying the model

First individual

Utility functions

VC1 = β1TC1 = −5.29
VT1 = β1TT1 + β0 = 0.06

Choice model

P1(transit) =
eVT1

eVT1 + eVC1
=

e0.06

e0.06 + e−5.29
∼= 1

Comments

The model fits the observation very well.

Consistent with the assumption that travel time is the only
explanatory variable.
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Applying the model

Second individual

Parameters

Let’s assume that β0 = 0.5 and β1 = −0.1

Variables

TC2 = 4.1

TT2 = 28.5

Choice = transit: yauto,2 = 0, ytransit,2 = 1

Choice

What’s the probability given by the model that this individual indeed
chooses transit?
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Applying the model

Second individual

Utility functions

VC2 = β1TC2 = −0.41
VT2 = β1TT2 + β0 = −2.35

Choice model

P2(transit) =
eVT2

eVT2 + eVC2
=

e−2.35

e−2.35 + e−0.41
∼= 0.13

Comment

The model fits the observation poorly.

But the assumption is that travel time is the only explanatory variable.

Still, the probability is not small.
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Applying the model

Back to the example

Two observations

The probability that the model reproduces both observations is

P1(transit)P2(transit) = 0.13

All observations

The probability that the model reproduces all observations is

P1(transit)P2(transit) . . .P21(auto) = 4.62 10−4

In general

L∗ =
∏
n

(Pn(auto)yauto,nPn(transit)ytransit,n)

where yj ,n is 1 if individual n has chosen alternative j , 0 otherwise
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Maximum likelihood estimation

Back to the example

L∗ is called the likelihood of the sample for a given model.

Probability that the model fits all observations

It is a function of the parameters

Examples for some values of β0 and β1

β0 β1 L∗
0 0 4.57 10−07

0 -1 1.97 10−30

0 -0.1 4.1 10−04

0.5 -0.1 4.62 10−04
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Maximum likelihood estimation

Likelihood function
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Maximum likelihood estimation

Likelihood function (zoom)
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Maximum likelihood estimation

Maximum likelihood estimation

Estimators for the parameters

Parameters that achieve the maximum likelihood

max
β

∏
n

(Pn(auto;β)yauto,nPn(transit;β)ytransit,n)

Log likelihood

Alternatively, we prefer to maximize the log likelihood

max
β

ln
∏
n

(Pn(auto)yauto,nPn(transit)ytransit,n) =

max
β

∑
n

ln (yauto,nPn(auto) + ytransit,nPn(transit))
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Maximum likelihood estimation

Maximum likelihood estimation
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Maximum likelihood estimation

Solving the optimization problem

Unconstrained nonlinear optimization

Iterative methods

Designed to identify a local maximum

When the function is concave, a local maximum is also a global
maximum

For binary logit, the log-likelihood is concave

Use the derivatives of the objective function

Example: package CFSQP used in BIOGEME
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Maximum likelihood estimation

Example of algorithm

Tests with CFSQP package within BIOGEME
Prec. β∗

0 β∗
1 L∗(β∗) ‖∇L∗(β∗)‖

1.0 +0.0000e+00 +1.4901e−08 -14.56 456.05
1.0e-01 +2.5810e−01 -5.5361e−02 -6.172 4.9646
1.0e-02 +2.4274e−01 -5.2330e−02 -6.167 1.9711
1.0e-03 +2.3732e−01 -5.3146e−02 -6.166 0.089982
1.0e-04 +2.3758e−01 -5.3110e−02 -6.166 0.0015384
1.0e-05 +2.3757e−01 -5.3110e−02 -6.166 0.0015384
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Maximum likelihood estimation

Example of algorithm: CFSQP
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Maximum likelihood estimation

Nonlinear optimization

Things to be aware of...

Iterative methods terminate when a given stopping criterion is
verified, based on the fact that, if β∗ is the optimum,

∇ lnL(β∗) = 0

Stopping criteria vary across optimization packages (based on
required precision) → slightly different solutions

Most methods are sensitive to the conditioning of the problem

A well-conditioned problem → all parameters have almost the same
magnitude
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Maximum likelihood estimation

Nonlinear optimization
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Maximum likelihood estimation

Nonlinear optimization

Things to be aware of...

Convergence may be very slow or even fail if likelihood function is flat

It happens when the model is not identifiable

Structural flaw in the model (e.g. full set of alternative specific
constants)

Lack of variability in the data (all prices are the same across the
sample)
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Maximum likelihood estimation

Nonlinear programming
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Estimation output

Output of the estimation

Solution of maxβ∈RK L(β)

β∗

lnL(β∗)

Case study

β∗0 = 0.2376

β∗1 = −0.0531

lnL(β∗0 , β
∗
1) = −6.166
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Estimation output

Second derivatives

Information about the quality of the estimators.
Let

∇2 lnL(β∗) =



∂2 lnL
∂β2

1

∂2 lnL
∂β1∂β2

· · · ∂2 lnL
∂β1∂βK

∂2 lnL
∂β2∂β1

∂2 lnL
∂β2

2
· · · ∂2 lnL

∂β2∂βK
...

. . .
...

...
. . .

...
∂2 lnL
∂βK∂β1

∂2 lnL
∂βK∂β2

· · · ∂2 lnL
∂β2

K


−∇2 lnL(β∗)−1 is a consistent estimator of the variance-covariance matrix

of the estimates... if the assumed distribution is “the true one”!

Transport and Mobility Laboratory Decision-Aid Methodologies 03 May 2016 45 / 52



Estimation output

Statistics

Statistics on the parameters

Parameter Value Std Err. t-test

β0 0.2376 0.7505 0.32
β1 -0.0531 0.0206 -2.57

Summary statistics

lnL(β∗) = -6.166

lnL(0) = -14.556

−2(lnL(0)− lnL(β∗)) = 16.780

ρ2 = 0.576, ρ̄2 = 0.439
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Estimation output

Null log likelihood

lnL(0)

sample log likelihood with a trivial model where all parameters are zero,
that is a model always predicting

P(1|{1, 2}) = P(2|{1, 2}) =
1

2

Purely a function of sample size

lnL(0) = log(
1

2N
) = −N log(2)
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Estimation output

Likelihood ratio

−2(lnL(0)− lnL(β∗))

log

(
lnL(0)

lnL(β∗)

)
= log(lnL(0))− log(lnL(β∗)) = lnL(0)− lnL(β∗)

Likelihood ratio test

H0: the two models are equivalent

Under H0, −2(lnL(0)− lnL(β∗)) is asymptotically distributed as χ2

with K degrees of freedom (K is the difference between the number
of parameters in the full model and the number of parameters in the
restricted model. The 2 models needs to be nested).

Similar to the F test in regression models

Transport and Mobility Laboratory Decision-Aid Methodologies 03 May 2016 48 / 52



Estimation output

Rho (bar) squared

ρ2

ρ2 = 1− lnL(β∗)

lnL(0)

Similar to the R2 in regression models

ρ̄2

ρ̄2 = 1− lnL(β∗)− K

lnL(0)
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Back to the scale

Comparing models

Arbitrary scale may be problematic when comparing models

Binary probit: σ2 = Var(εi − εj) = 1

Binary logit: Var(εi − εj) = π2/(3µ) = π2/3

Var(αU) = α2 Var (U).

Scaled logit coeff. are π/
√

3 larger than scaled probit coeff.
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Back to the scale

Comparing models

Estimation results

Probit Logit Probit * π/
√

3

L -6.165 -6.166
β0 0.064 0.238 0.117
β1 -0.030 -0.053 -0.054

Note: π/
√

3 ≈ 1.814

Transport and Mobility Laboratory Decision-Aid Methodologies 03 May 2016 51 / 52



Back to the scale

Maximum likelihood for binary logit

Let Cn = {i , j}
Let yin = 1 if i is chosen by n, 0 otherwise

Let yjn = 1 if j is chosen by n, 0 otherwise

Obviously, yin = 1− yjn

Log-likelihood of the sample

N∑
n=1

(
yin ln

eVin

eVin + eVjn
+ yjn ln

eVjn

eVin + eVjn

)
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