Decision-Aid Methodologies in Transportation Choice Theory

Matthieu de Lapparent

Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne

26 April 2016

Transport and Mobility Laboratory

Decision-Aid Methodologies

Outline

Choice theory foundations

2 Consumer theory

Simple example

(日) (同) (三) (三)

Choice theory

Choice: outcome of a sequential decision-making process

- Definition of the choice problem: How do I get to EPFL?
- Generation of alternatives: Car as driver, car as passenger, train, bicycle, walk...
- Evaluation of the attributes of the alternatives: Price, time, flexibility, reliability, comfort
- Choice: Decision rule
- Implementation: Travel

過す イヨト イヨト

Building the theory

A choice theory defines

- Decision maker
- 2 Alternatives
- Attributes of alternatives
- Oecision rule

(日) (同) (三) (三)

Decision maker

Unit of analysis

- Individual
 - Socio-economic characteristics: age, gender, income, education, etc.
- A group of persons (ignoring within-group peer effects)
 - Household, firm, government agency
 - Group characteristics
- Notation: subscript n

A D A D A D A

Alternatives

Choice set

- Mutually exclusive, finite, exhaustive set of alternatives
- Universal choice set $\mathcal C$
- Individual *n*: choice set $C_n \subseteq C$
- Availability, awareness, feasibility, consideration

Example: Choice of transport mode

- $C = \{car, bus, metro, walk\}$
- ...traveller has no drivers licence, trip is 12km long
- $C_n = \{bus, metro\}$

Swait, J. (1984) Probabilistic Choice Set Formation in Transportation Demand Models Ph.D. dissertation, Department of Civil Engineering, MIT, Cambridge, Ma.

Transport and Mobility Laboratory

Decision-Aid Methodologies

26 April 2016 6 / 36

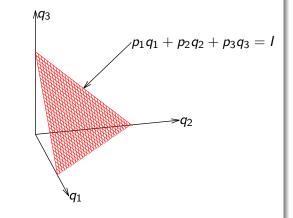
イロト イヨト イヨト イヨト

Continuous choice set

Microeconomic demand analysis

Commodity bundle

- q1: quantity of milk
- q₂: quantity of bread
- q₃: quantity of butter
- Unit price: p_i
- Budget: I

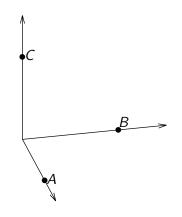


Discrete choice set

Discrete choice analysis

List of alternatives

- Brand A
- Brand B
- Brand C



Alternative attributes

Characterize each alternative i for each individual n

- → cost
- → travel time
- → walking time
- → comfort
- → bus frequency
- → etc.

Nature of the variables

- ✔ Generic or specific
- Quantitative or qualitative
- ✓ Measured or perceived

< ∃ >

Decision rules

Standard microeconomic decision-maker

- Full knowledge of options, context and environment
- Organized and stable system of preferences
- Evaluates each alternative and assigns precise pay-off (measured through the utility index)
- Selects alternative with highest pay-off

Utility

- Captures attractiveness of alternative
- Allows ranking (ordering) of alternatives
- What decision maker optimizes

A B F A B F

A matter of viewpoints

Individual perspective

• Individual possesses perfect information and discrimination capacity

Modeler perspective

- Modeler does not have full information about choice process
- Treats the utility as a random variable
- At the core of the concept of 'random utility'

Consumer theory

Neoclassical consumer theory

- Underlies mathematical analysis of preferences
- Allows us to transform 'attractiveness rankings'...
- into operational demand functions

Keep in mind

- Utility is a latent concept
- It cannot be directly observed

Figure: Jeremy Bentham

(4) (5) (4) (5)

Consumer theory

Continuous choice set

• Consumption bundle

$$Q = \begin{pmatrix} q_1 \\ \vdots \\ q_L \end{pmatrix}; p = \begin{pmatrix} p_1 \\ \vdots \\ p_L \end{pmatrix}$$

Budget constraint

$$\sum_{\ell=1}^{L} p_{\ell} q_{\ell} \leq I.$$

.

• No attributes, just quantities

26 April 2016 13 / 36

4 E b

→ ∃ >

Preferences

Operators \succ , \sim , and \succeq

- $Q_a \succ Q_b$: Q_a is preferred to Q_b ,
- $Q_a \sim Q_b$: indifference between Q_a and Q_b ,
- $Q_a \succeq Q_b$: Q_a is at least as preferred as Q_b .

To ensure consistent ranking

• Completeness: for all bundles a and b,

$$Q_a \succ Q_b$$
 or $Q_a \prec Q_b$ or $Q_a \sim Q_b$.

• Transitivity: for all bundles a, b and c,

$$\text{if } Q_a \succsim Q_b \text{ and } Q_b \succsim Q_c \text{ then } Q_a \succsim Q_c. \\$$

 "Continuity": if Q_a is preferred to Q_b and Q_c is arbitrarily "close" to Q_a, then Q_c is preferred to Q_b.

Transport and Mobility Laboratory

Decision-Aid Methodologies

Preferences, cont.

further non necessary assumptions to have a "well-behaved" utility function:

- monotonicity,
- non satiety,
- convexity

• • = • • = •

Utility

Utility function

• Parametrized function:

$$\widetilde{U} = \widetilde{U}(q_1, \ldots, q_L; \theta) = \widetilde{U}(Q; \theta)$$

• Consistent with the preference indicator:

$$\widetilde{U}(Q_{a}; heta) \geq \widetilde{U}(Q_{b}; heta)$$

is equivalent to

$$Q_a \succeq Q_b.$$

• Unique up to an order-preserving transformation

→ 3 → 4 3

Optimization problem

Optimization

Decision-maker solves the optimization problem

$$\max_{q\in\mathcal{R}^L}U(q_1,\ldots,q_L)$$

subject to the budget (available income) constraint

$$\sum_{i=1}^{L} p_i q_i = I.$$

Demand

Quantity is a function of prices and budget

$$q^* = f(I,p;\theta)$$

Transport and Mobility Laboratory

Decision-Aid Methodologies

26 April 2016 17 / 36

< 口 > < 同 >

Optimization problem

$$\max_{q_1,q_2} U = \beta_0 q_1^{\beta_1} q_2^{\beta_2}$$

subject to

$$p_1q_1 + p_2q_2 = I.$$

Lagrangian of the problem:

$$L(q_1, q_2, \lambda) = \beta_0 q_1^{\beta_1} q_2^{\beta_2} - \lambda (p_1 q_1 + p_2 q_2 - I).$$

Necessary optimality condition

$$\nabla L(q_1,q_2,\lambda)=0$$

where λ is the Lagrange multiplier and β 's are the Cobb-Douglas preference parameters

Transport and Mobility Laboratory

26 April 2016 18 / 36

イロト 不得下 イヨト イヨト 二日

Framework

Optimality conditions

Lagrangian is differentiated to obtain the first order conditions

$$\frac{\partial L}{\partial q_1} = \beta_0 \beta_1 q_1^{\beta_1 - 1} q_2^{\beta_2} - \lambda p_1 = 0 \frac{\partial L}{\partial q_2} = \beta_0 \beta_2 q_1^{\beta_1} q_2^{\beta_2 - 1} - \lambda p_2 = 0 \frac{\partial L}{\partial \lambda} = p_1 q_1 + p_2 q_2 - I = 0$$

We have

$$\begin{array}{rcl} \beta_0 \beta_1 q_1^{\beta_1} q_2^{\beta_2} & - & \lambda p_1 q_1 & = & 0 \\ \beta_0 \beta_2 q_1^{\beta_1} q_2^{\beta_2} & - & \lambda p_2 q_2 & = & 0 \end{array}$$

Adding the two and using the third optimality condition

$$\lambda I = \beta_0 q_1^{\beta_1} q_2^{\beta_2} (\beta_1 + \beta_2)$$

Framework

Equivalent to

$$\beta_0 q_1^{\beta_1} q_2^{\beta_2} = \frac{\lambda I}{(\beta_1 + \beta_2)}$$

As $\beta_0\beta_2q_1^{\beta_1}q_2^{\beta_2}=\lambda p_2q_2$, we obtain (assuming $\lambda\neq 0$)

$$q_2^*=rac{Ieta_2}{p_2(eta_1+eta_2)}$$

Similarly, we obtain

$$q_1^*=rac{leta_1}{p_1(eta_1+eta_2)}$$

Transport and Mobility Laboratory

26 April 2016 20 / 36

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Demand functions

Product 1

$$q_1^* = \frac{I}{p_1} \frac{\beta_1}{\beta_1 + \beta_2}$$

Product 2

$$q_2^* = \frac{l}{p_2} \frac{\beta_2}{\beta_1 + \beta_2}$$

Comments

- Demand decreases with price
- Demand increases with budget
- Demand independent of β_0 , which does not affect the ranking

(日) (同) (三) (三)

Marginal rate of substitution

Factoring out λ from first order conditions we get

$$\frac{p_1}{p_2} = \frac{\partial U(q^*)/\partial q_1}{\partial U(q^*)/\partial q_2} = \frac{MU(q_1)}{MU(q_2)}$$

MRS

- Ratio of marginal utilities (right) equals...
- ratio of prices of the 2 goods (left)
- Holds if consumer is making optimal choices

Transport and Mobility Laboratory

26 April 2016 22 / 36

Discrete goods

Discrete choice set

• Calculus cannot be used anymore

$$U=U(q_1,\ldots,q_L)$$

with

$$q_i = \begin{cases} 1 & \text{if product } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

and

$$\sum_i q_i = 1.$$

Transport and Mobility Laboratory

Decision-Aid Methodologies

26 April 2016 23 / 36

3

Image: A Image: A

Framework

- Do not work with demand functions anymore
- Work with utility functions
- *U* is the "global" utility
- Define U_i the utility associated with product *i*.
- It is a function of the attributes of the product (price, quality, etc.)
- We say that product *i* is chosen if

$$U_i \geq U_j \quad \forall j.$$

Transport and Mobility Laboratory

- ∢ ∃ ▶

Attributes

	Attributes	
Alternatives	Travel time (t)	Travel cost (<i>c</i>)
Car (1)	t_1	<i>c</i> ₁
Train (2)	t_2	<i>c</i> ₂

Utility

$$\widetilde{U} = \widetilde{U}(y_1, y_2),$$

where we impose the restrictions that, for i = 1, 2,

$$y_i = \begin{cases} 1 & \text{if travel alternative i is chosen,} \\ 0 & \text{otherwise;} \end{cases}$$

and that only one alternative is chosen: $y_1 + y_2 = 1$.

Utility functions

$$U_1 = -\beta_t t_1 - \beta_c c_1, U_2 = -\beta_t t_2 - \beta_c c_2,$$

where $\beta_t > 0$ and $\beta_c > 0$ are parameters.

Equivalent specification

$$U_1 = -(\beta_t/\beta_c)t_1 - c_1 = -\beta t_1 - c_1 U_2 = -(\beta_t/\beta_c)t_2 - c_2 = -\beta t_2 - c_2$$

where $\beta > 0$ is a parameter.

Choice

- Alternative 1 is chosen if $U_1 \ge U_2$.
- Ties are ignored (note: the probability that it occurs is uniformly equal to 0 because Us are continuous functions).

Transport and Mobility Laboratory

Decision-Aid Methodologies

26 April 2016 26 / 36

Choice

Alternative 1 is chosen if	Alternative 2 is chosen if	
$-\beta t_1 - c_1 \ge -\beta t_2 - c_2$	$-\beta t_1 - c_1 \leq -\beta t_2 - c_2$	
or	or	
$-\beta(t_1-t_2)\geq c_1-c_2$	$-\beta(t_1-t_2) \leq c_1-c_2$	

Dominated alternative

• If
$$c_2 > c_1$$
 and $t_2 > t_1$, $U_1 > U_2$ for any $\beta > 0$
• If $c_1 > c_2$ and $t_1 > t_2$, $U_2 > U_1$ for any $\beta > 0$

) If
$$c_1>c_2$$
 and $t_1>t_2$, $U_2>U_1$ for any $eta>0$

Transport and Mobility Laboratory

・ロン ・四 ・ ・ ヨン ・ ヨン

Trade-off

- Assume $c_2 > c_1$ and $t_1 > t_2$.
- Is the traveler willing to pay the extra cost c₂ − c₁ to save the extra time t₁ − t₂?
- Alternative 2 is chosen if

$$-\beta(t_1-t_2) \leq c_1-c_2$$

or

$$\beta \geq \frac{c_2 - c_1}{t_1 - t_2}$$

• β is called the *willingness to pay* or *value of time*

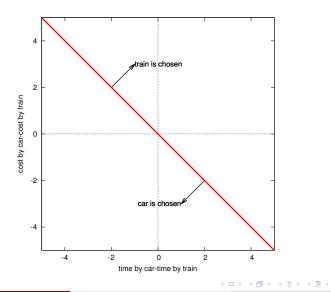
Dominated choice example

Obvious cases:

- $c_1 \ge c_2$ and $t_1 \ge t_2$: 2 dominates 1.
- $c_2 \ge c_1$ and $t_2 \ge t_1$: 1 dominates 2.
- Trade-offs in over quadrants

- - E - N

Illustration

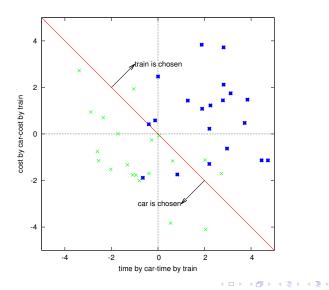


Transport and Mobility Laboratory

Decision-Aid Methodologies

26 April 2016 30 / 36

Illustration with real data



Transport and Mobility Laboratory

Decision-Aid Methodologies

26 April 2016 31 / 36

э

Is utility maximization a behaviorally valid assumption?

Assumptions

Decision-makers

- have preferences in line with classical consumer theory
- are able to process full information
- have perfect discrimination power
- have perfect knowledge
- are perfect maximizer
- are always consistent

Introducing probability

Constant utility

- Human behavior is inherently random
- Utility is deterministic
- Consumer does not maximize utility
- Probability to use inferior alternative is non zero

Random utility

- Decision-maker are rational maximizers
- Analysts have no access to the utility used by the decision-maker
- Utility becomes a random variable

Niels Bohr "Nature is stochastic"

Einstein "God does not throw dice"

Assumptions

Sources of uncertainty

- Unobserved attributes
- Unobserved taste variations
- Measurement errors
- Instrumental variables

Manski 1973 The structure of Random Utility Models *Theory and Decision* 8:229–254

Random utility maximization

Probabilistic setup

Use a probabilistic approach: what is the probability that alternative i is chosen?

What is the probability that alternative i is the one that gives maximum utility?

Transport and Mobility Laboratory

Decision-Aid Methodologies

26 April 2016 35 / 36

Random utility model

Probability model

$$P(i|\mathcal{C}_n) = \Pr(U_{in} \ge U_{jn}, \text{ all } j \in \mathcal{C}_n),$$

Random utility

$$U_{in} = V_{in} + \varepsilon_{in}.$$

Random utility model

$$P(i|\mathcal{C}_n) = \Pr(V_{in} + \varepsilon_{in} \ge V_{jn} + \varepsilon_{jn}, \text{ all } j \in \mathcal{C}_n),$$

or

$$P(i|\mathcal{C}_n) = \Pr(\varepsilon_{jn} - \varepsilon_{in} \leq V_{in} - V_{jn}, \text{ all } j \in \mathcal{C}_n).$$

Transport and Mobility Laboratory

3

イロト イヨト イヨト イヨト