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Components of the Logit model Random Utility

Random Utility

For each i ∈ Cn

Uin = Vin + εin

What is Cn?

What is Vin?

What is εin?
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Components of the Logit model Choice set

Choice set

Universal choice set C
All potential alternatives for the population

Restricted to relevant alternatives

Mode choice:

driving alone sharing a ride taxi
motorcycle bicycle walking
bus rail rapid transit horse
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Components of the Logit model Choice set

Choice set

Individual’s choice set

No driver’s license

No auto

Awareness of bus services

Rail transit services
unreachable

Walking not an option for
long distance

Individual’s mode choice

driving alone

sharing a ride

taxi

motorcycle

bicycle

walking

bus

rail rapid transit

horse
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Components of the Logit model Choice set

Choice set

Choice set generation is tricky

How to model “awareness”?

What does “unreachable” mean exactly?

What does “long distance” mean exactly?

We will continue assuming a deterministic rule
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Components of the Logit model Error terms

Error terms

Main assumption
εin are

extreme value EV(0,µ),

independent and

identically distributed.

Comments

Independence: across i and n.

Identical distribution: same scale parameter µ across i and n.

Scale must be normalized, e.g. µ = 1

Transport and Mobility Laboratory Multinomial logit 7 / 70



Components of the Logit model Error terms

Illustration of µ: A rising tide lifts all boats
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Components of the Logit model Error terms

Derivation of the logit model

Reminder: binary case

Cn = {i , j}
Uin = Vin + εin

εin ∼ EV(0, µ)

εin i.i.d.

Choice model

P(i |Cn = {i , j}) =
eµVin

eµVin + eµVjn
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Components of the Logit model Error terms

Derivation of the logit model

Multiple alternatives

Cn = {1, . . . , Jn}
Uin = Vin + εin

εin ∼ EV(0, µ)

εin i.i.d.

Choice model

P(i |Cn) = P(Vin + εin ≥ max
j=1,...,Jn

Vjn + εjn)

Assume without loss of generality (wlog) that i = 1

P(1|Cn) = P(V1n + ε1n ≥ max
j=2,...,Jn

Vjn + εjn)
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Components of the Logit model Error terms

Derivation of the logit model

Composite alternative

Define a composite alternative as “anything but alternative one”

Associated utility:
U∗ = max

j=2,...,Jn
(Vjn + εjn)

From a property of the EV distribution

U∗ ∼ EV

 1

µ
ln

Jn∑
j=2

eµVjn , µ


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Components of the Logit model Error terms

Derivation of the logit model

From another property of the EV distribution

U∗ = V ∗ + ε∗

where

V ∗ =
1

µ
ln

Jn∑
j=2

eµVjn

and
ε∗ ∼ EV(0, µ)
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Components of the Logit model Error terms

Derivation of the logit model

Therefore

P(1|Cn) = P(V1n + ε1n ≥ maxj=2,...,Jn Vjn + εjn)
= P(V1n + ε1n ≥ V ∗ + ε∗)

This is a binary choice model with a systematic composite alternative

P(1|Cn) =
eµV1n

eµV1n + eµV ∗

where

V ∗ =
1

µ
ln

Jn∑
j=2

eµVjn
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Components of the Logit model Error terms

Derivation of the logit model

and can be rewritten as

P(1|Cn) =
eµV1n

eµV1n + eµV ∗

=
eµV1n

eµV1n +
∑Jn

j=2 e
µVjn

=
eµV1n∑Jn
j=1 e

µVjn
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Components of the Logit model Error terms

Derivation of the logit model

The scale parameter µ is not identifiable: µ = 1.

Warning: not identifiable 6= not existing

Limiting cases

µ→ 0, that is variance goes to infinity

lim
µ→0

P(i |Cn) =
1

Jn
∀i ∈ Cn

µ→ +∞, that is variance goes to zero

limµ→∞ P(i |Cn) = limµ→∞
1

1+
∑

j 6=i e
µ(Vjn−Vin)

=

{
1 if Vin > maxj 6=i Vjn

0 if Vin < maxj 6=i Vjn
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Components of the Logit model Error terms

Another derivation of the Multinomial logit model

P(i |Cn) = P(j ∈ Cn, j 6= i ,Vin + εin ≥ Vjn + εjn)

P(i |Cn) = P(j ∈ Cn, j 6= i ,Vin − Vjn + εin ≥ εjn)

P(i |Cn) =

∫ +∞

−∞

 ∏
j∈Cn,j 6=i

∫ Vin−Vjn+εin

−∞
f (εjn)dεjn

 f (εin)dεin

P(i |Cn) =

∫ +∞

−∞

∏
j∈Cn,j 6=i

e−e
Vjn−Vin−εin

f (εin)dεin
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Components of the Logit model Error terms

Another derivation of the Multinomial logit model, cont.

P(i |Cn) =

∫ +∞

−∞
e−

∑
j∈Cn,j 6=i e

Vjn−Vin−εin
f (εin)dεin

P(i |Cn) =

∫ +∞

−∞
e−e

−εin
∑

j∈Cn,j 6=i e
Vjn−Vin

e−εine−e
−εindεin

yin = e−εin , dyin = −e−εindεin, yin → ]0; +∞[

P(i |Cn) =

∫ +∞

0
e
−yin

(
1+
∑

j∈Cn,j 6=i e
Vjn−Vin

)
dyin

P(i |Cn) =
1

1 +
∑

j∈Cn,j 6=i e
Vjn−Vin

=
eVin∑

j∈Cn e
Vjn
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Systematic utility

Systematic part of the utility function

Shift focus from ε to V

Vin = V (zin, Sn)

where

zin is a vector of attributes of alternative i for individual n

Sn is a vector of socio-economic characteristics of n

Outline:

Functional form: linear utility

Explanatory variables: What exactly is contained in zin and Sn?

Functional form: capturing nonlinearities

Interactions
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Systematic utility Linear utility

Functional form: linear utility

Notation for explanatory variables

xin = (zin,Sn)

In general, linear-in-parameters utility functions are used

Vin = V (zin, Sn) = V (xin) =
∑
k

βk(xin)k

Not as restrictive as it may seem

Transport and Mobility Laboratory Multinomial logit 19 / 70



Systematic utility Continuous variables

Explanatory variables: attributes of alternatives

Numerical and continuous

(zin)k ∈ R, ∀i , n, k
Associated with a specific unit

Examples

Auto in-vehicle time (in min.)

Transit in-vehicle time (in min.)

Auto out-of-pocket cost (in cents)

Transit fare (in cents)

Walking time to the bus stop (in min.)

Straightforward modeling
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Systematic utility Continuous variables

Explanatory variables: attributes of alternatives

Vin is unitless

Therefore, β depends on the unit of the associated attribute

Example: consider two specifications

Vin = β1TTin + · · ·
Vin = β′1TT′in + · · ·

If TTin is measured in minutes, the unit of β1 is 1/min

If TT′in is measured in hours, the unit of β′1 is 1/hour

Both models are equivalent, but the estimated β will be scaled
differently

β1TTin = β′1TT′in =⇒ TTin

TT′in
=
β′1
β1

= 60
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Systematic utility Continuous variables

Explanatory variables: attributes of alternatives

Impact of attributes on different alternatives

Generic, or
Vauto = β1TTauto

Vbus = β1TTbus

Alternative specific parameters

Vauto = β1TTauto

Vbus = β2TTbus

Modeling assumption: a minute has/doesn’t have the same marginal
utility whether it is incurred on the auto or bus mode
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Systematic utility Continuous variables

Explanatory variables: socio-eco. characteristics

Numerical and continuous

Numerical and continuous

(Sn)k ∈ R, ∀n, k
Associated with a specific unit

Examples

Annual income (in KCHF)

Age (in years)

Warning: Sn do not depend on i
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Systematic utility Continuous variables

Explanatory variables: socio-eco. characteristics

They cannot appear in all utility functions

V1 = β1x11 + β2income
V2 = β1x21 + β2income
V3 = β1x31 + β2income

⇐⇒


V ′1 = β1x11

V ′2 = β1x21

V ′3 = β1x31

Need to specify as alternative specific, e.g.

V1 = β1x11 + β2income +β4age
V2 = β1x21 + β3income +β5age
V3 = β1x31
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Systematic utility Discrete variables

Functional form: dealing with nonlinearities

Discrete and qualitative variables

Continuous variables

Categories
Splines
Box-Cox
Power series
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Systematic utility Discrete variables

Discrete variables

Mainly used to capture impact of qualitative attributes

Level of comfort for the train

Reliability of the bus

Color of car

etc...

or discrete characteristics

Sex

Education

Professional status

etc.
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Systematic utility Discrete variables

Discrete variables

Procedure for model specification

Identify all possible levels of the attribute:

Very high comfort (V),
High comfort (H),
Moderate comfort (M),
Low comfort (L)

Select a base case: Very high comfort

Define numerical attributes

Adopt a coding convention
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Systematic utility Discrete variables

Discrete variables

Introduce a 0/1 attribute code
for all levels except the base case

zH for High comfort

zM for Moderate comfort

zL for Low comfort

zH zM zL

Very high comfort 0 0 0
High comfort 1 0 0

Moderate comfort 0 1 0
Low comfort 0 0 1

If a qualitative attribute has n levels, we introduce
n − 1 (0/1) variables in the model
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Systematic utility Discrete variables

Comparing two coding conventions

Very high comfort fixed as base

V = · · · +βVzV +βHzH +βMzM +βLzL whereβV = 0

βH: difference of utility between high comfort and very high comfort
(supposedly negative)

βM: difference of utility between moderate comfort and very high
comfort (supposedly more negative)

βL: difference of utility between low comfort and very high comfort
(supposedly even more negative)

Transport and Mobility Laboratory Multinomial logit 29 / 70



Systematic utility Discrete variables

Comparing two ways of coding

High comfort fixed as base

V ′ = · · · +βVzV +βHzH +βMzM +βLzL whereβH = 0

β′V: difference of utility between very high comfort and high comfort
(supposedly positive)

β′M: difference of utility between moderate comfort and high comfort
(supposedly negative)

β′L: difference of utility between low comfort and high comfort
(supposedly more negative)
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Systematic utility Discrete variables

Discrete variables

Example of estimation with Biogeme:

Model 1 Model 2

ASC 0.574 0.574

BETA V 0.000 0.918

BETA H -0.919 0.000

BETA M -1.015 -0.096

BETA L -2.128 -1.210
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Systematic utility Nonlinearities

Nonlinear transformations of the variables

Example with travel time

Compare a trip of 5 min with a trip of 10 min (+5 minutes)

Compare a trip of 120 min with a trip of 125 min (+5 minutes)

Behavioral assumption

One additional minute of travel time is not perceived in the same way for
short trips as for long trips
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Systematic utility Nonlinearities

Nonlinear transformations of the variables
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Systematic utility Nonlinearities

Nonlinear transformations of the variables

Assumption 1: the marginal impact of travel time is constant

Vi = βT timei + · · ·

Assumption 2: the marginal impact of travel time decreases with longer
travel time

Vi = βT ln(timei ) + · · ·

Remarks

Still a linear-in-parameters form

The unit, the value, and the interpretation of βT is different
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Systematic utility Nonlinearities

Continuous variables: split into categories

Like earlier assumption: sensitivity to travel time varies with travel time
level

Logarithmic transformation not the only specification

Another possibility is to split travel time into categories (here TT in
minutes)

Short: 0-90 min
Medium: 91 - 180 min
Long: 181 - 270 min
Very long: over 271 min

Possible specifications

Categories with constants (inferior solution)

Piecewise linear specification (spline)
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Systematic utility Nonlinearities

Continuous variables: categories with constants

Same specification as for discrete variables

Vi = βT1xT1 + βT2xT2 + βT3xT3 + βT4xT4 + . . .

with

xT1 = 1 if TTi ∈ [0–90[, 0 otherwise

xT2 = 1 if TTi ∈ [91–180[, 0 otherwise

xT3 = 1 if TTi ∈ [181–270[, 0 otherwise

xT4 = 1 if TTi ∈ [271–[, 0 otherwise

One β must be normalized to 0.
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Systematic utility Nonlinearities

Continuous variables: categories with constants
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Systematic utility Nonlinearities

Continuous variables: categories with constants

Drawbacks

No sensitivity to travel time within the intervals

Discontinuous utility function (jumps)

Need for many small intervals

Results may vary significantly with the definition of the intervals

Appropriate when

Categories have been used in the survey (income, age)

Definition of categories is natural (weekday)
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Systematic utility Nonlinearities

Continuous variables: Piecewise linear specification

Piecewise linear specification (spline)

Captures the sensitivity within the intervals

Enforces continuity of the utility function
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Systematic utility Nonlinearities

Piecewise linear specification

Features

Capture the sensitivity within the intervals

Enforce continuity of the utility function

Vi = βT1xT1 + βT2xT2 + βT3xT3 + βT4xT4 + . . .

where

xT1 =

{
t if t < 90
90 otherwise

xT2 =

 0 if t < 90
t − 90 if 90 ≤ t < 180
90 otherwise

xT3 =

 0 if t < 180
t − 180 if 180 ≤ t < 270
90 otherwise

xT4 =

{
0 if t < 270
t − 270 otherwise
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Systematic utility Nonlinearities

Piecewise linear specification

Note: coding in Biogeme for interval [a:a+b[

xTi =


0 if t < a
t − a if a ≤ t < a + b
b otherwise

xTi = max(0,min(t − a, b))

xT1 = min(t, 90)
xT2 = max(0,min(t − 90, 90))
xT3 = max(0,min(t − 180, 90))
xT4 = max(0, t − 270)

TRAIN_TT1 = min( TRAIN_TT , 90)

TRAIN_TT2 = max(0,min( TRAIN_TT - 90, 90))

TRAIN_TT3 = max(0,min( TRAIN_TT - 180 , 90))

TRAIN_TT4 = max(0,TRAIN_TT - 270)
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Systematic utility Nonlinearities

Piecewise linear specification

Examples:

t TT1 TT2 TT3 TT4

40 40 0 0 0
100 90 10 0 0
200 90 90 20 0
300 90 90 90 30
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Systematic utility Nonlinearities

Piecewise linear specification
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Systematic utility Nonlinearities

Continuous variables: Box-Cox transforms

Box-Cox transform

Box and Cox, J. of the Royal Statistical Society (1964)

Vi = βxi (λ) + · · ·

where

xi (λ) =


xλi − 1

λ
if λ 6= 0

ln xi if λ = 0.

where xi > 0.
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Systematic utility Nonlinearities

Box-Cox transforms

Box-Tukey transform

If xi ≤ 0, include a constant α such that xi + α > 0 and

xi (λ, α) =


(xi + α)λ − 1

λ
if λ 6= 0

ln(xi + α) if λ = 0.
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Systematic utility Nonlinearities

Box-Cox transforms (λ = 0.7)
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Systematic utility Nonlinearities

Power series

Taylor expansion

Vi = β1T + β2T
2 + β3T

3 + . . .

In practice, these terms can be very correlated

Difficult to interpret

Risk of over fitting
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Systematic utility Nonlinearities

Power series
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Systematic utility Interactions

Interactions

All individuals in a population are not alike

Socio-economic characteristics define segments in the population

How to capture heterogeneity?

Interactions of attributes and characteristics
Discrete segmentation
Continuous segmentation
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Systematic utility Interactions

Interactions of attributes and characteristics

Combination of attributes

cost / income

fare / disposable income

distance / out-of-vehicle time (=speed)

warning: correlation of attributes may produce degeneracy in the model
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Systematic utility Interactions

Interactions: discrete segmentation

Example with discrete segments

Hypothesis: different sensitivities for combinations of:

Gender (M,F)
House location (metro, suburb, periphery areas)

Each individual belongs to exactly one of the 6 segments

Specification of 6 segments

βM,mTTM,m + βM,sTTM,s + βM,pTTM,p+
βF ,mTTF ,m + βF ,sTTF ,s + βF ,pTTF ,p+

TTi = TT if indiv. belongs to segment i , and 0 otherwise
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Systematic utility Interactions

Interactions: continuous segmentation

Example with continuous characteristics

Hypothesis: the cost parameter varies with income

βcost = β̂cost

(
inc

incref

)λ
with λ =

∂βcost

∂inc

inc

βcost

Reference value is arbitrary

Several characteristics can be combined:

βcost = β̂cost

(
inc

incref

)λ1
(

age

ageref

)λ2

warning: λ must be estimated and utility is no longer linear-in-parameters
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Systematic utility Heteroscedasticity

Heteroscedasticity

Assumption: variance of error terms is different across individuals

Assume there are two different groups such that

Uin1 = Vin1 + εin1

Uin2 = Vin2 + εin2

and var(εin2) = α2var(εin1)

Logit is homoscedastic

εin i.i.d. across both i and n.

How can we specify the model in order to use logit?

Motivation

People have different level of knowledge (e.g. taxi drivers)

Different sources of data
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Systematic utility Heteroscedasticity

Heteroscedasticity

Solution: include scale parameters

αUin1 = αVin1 + αεin1 = αVin1 + ε′in1

Uin2 = Vin2 + εin2 = Vin2 + ε′in2

where ε′in1
and ε′in2

are i.i.d.

Remarks

Even if Vin1 =
∑

j βjxjin1 is linear-in-parameters, αVin1 =
∑

j αβjxjin1

is not.

Normalization: a different scale parameter can be estimated for each
segment of the population, except one that must be normalized.
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A case study

A case study

Choice of residential telephone services

Household survey conducted in Pennsylvania, USA, 1984

Revealed preferences

434 observations
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A case study

A case study

Telephone services and availability

metro, suburban

& some other

perimeter perimeter non-metro

areas areas areas

Budget Measured yes yes yes

Standard Measured yes yes yes

Local Flat yes yes yes

Extended Area Flat no yes no

Metro Area Flat yes yes no
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A case study

A case study

Universal choice set

C = {BM, SM, LF,EF,MF}

Specific choice sets

Metro, suburban & some perimeter areas: {BM,SM,LF,MF}
Other perimeter areas: C
Non-metro areas: {BM,SM,LF}
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A case study

A case study

Specification table

β1 β2 β3 β4 β5

BM 0 0 0 0 ln(cost(BM))
SM 1 0 0 0 ln(cost(SM))
LF 0 1 0 0 ln(cost(LF))
EF 0 0 1 0 ln(cost(EF))
MF 0 0 0 1 ln(cost(MF))

Transport and Mobility Laboratory Multinomial logit 58 / 70



A case study

A case study

Utility functions

VBM = β5 ln(costBM)
VSM = β1 + β5 ln(costSM)
VLF = β2 + β5 ln(costLF)
VEF = β3 + β5 ln(costEF)
VMF = β4 + β5 ln(costMF)
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A case study

A case study

Specification table II

β1 β2 β3 β4 β5 β6 β7

BM 0 0 0 0 ln(cost(BM)) users 0
SM 1 0 0 0 ln(cost(SM)) users 0
LF 0 1 0 0 ln(cost(LF)) 0 1 if metro/suburb

EF 0 0 1 0 ln(cost(EF)) 0 0
MF 0 0 0 1 ln(cost(MF)) 0 0
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A case study

A case study

Utility functions

VBM = β5 ln(costBM) + β6users
VSM = β1 + β5 ln(costSM) + β6users
VLF = β2 + β5 ln(costLF) + β7MS
VEF = β3 + β5 ln(costEF)
VMF = β4 + β5 ln(costMF)
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Maximum likelihood estimation

Maximum likelihood estimation

Logit Model

Pn(i |Cn) =
eVin∑

j∈Cn e
Vjn

Log-likelihood of a sample

L(β1, . . . , βK ) =
N∑

n=1

 J∑
j=1

yjn lnPn(j |Cn)


where yjn = 1 if ind. n has chosen alt. j , 0 otherwise
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Maximum likelihood estimation

Maximum likelihood estimation

Logit model

lnPn(i |Cn) = ln eVin∑
j∈Cn e

Vjn

= Vin − ln(
∑

j∈Cn e
Vjn)

Log-likelihood of a sample for logit

L(β1, . . . , βK ) =
N∑

n=1

J∑
i=1

yin

Vin − ln
∑
j∈Cn

eVjn


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Maximum likelihood estimation

Maximum likelihood estimation

The maximum likelihood estimation problem

max
β∈RK

L(β)

Nonlinear optimization

If the V ’s are linear-in-parameters, the function is concave
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Maximum likelihood estimation

Maximum likelihood estimation

Numerical issue

Pn(i |Cn) =
eVin∑

j∈Cn e
Vjn

Largest value that can be stored in a computer ≈ 10308, that is

e709.783

It is equivalent to compute

Pn(i |Cn) =
eVin−Vin∑

j∈Cn e
Vjn−Vin

=
1∑

j∈Cn e
Vjn−Vin
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Simple models

Simple models

Null model

Ui = εi ∀i

Pn(i |Cn) =
eVin∑

j∈Cn e
Vjn

=
e0∑
j∈Cn e

0
=

1

#Cn

L =
∑
n

ln
1

#Cn
= −

∑
n

ln(#Cn)
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Simple models

Simple models

Constants only [Assume Cn = C, ∀n]

Ui = ci + εi ∀i

In the sample of size n, there are ni persons choosing alt. i .

lnP(i) = ci − ln(
∑
j

ecj )

If Cn is the same for all people choosing i , the log-likelihood for this part
of the sample is

Li = nici − ni ln(
∑
j

ecj )
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Simple models

Simple models

Constants only (ctd)

The total log-likelihood is

L =
∑
j

njcj − n ln(
∑
j

ecj )

At the maximum, the derivatives must be zero

∂L
∂c1

= n1 − n
ec1∑
j e

cj
= n1 − nP(1) = 0.
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Simple models

Simple models

Constants only (ctd.)

Therefore,

P(1) =
n1

n

Conclusion

If all alternatives are always available, a model with only Alternative
Specific Constants reproduces exactly the market shares in the sample
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Simple models

Back to the case study

Alt. ni ni/n ci eci P(i)

BM 73 0.168 0.247 1.281 0.168
SM 123 0.283 0.769 2.158 0.283
LF 178 0.410 1.139 3.123 0.410
EF 3 0.007 -2.944 0.053 0.007

MF 57 0.131 0.000 1.000 0.131

434 1.000

Null-model: L = -434 ln(5) = -698.496
Warning: results have been obtained assuming that all alternatives are always available
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