Decision-Aid Methodologies in Transportation

Michel Bierlaire, Matthieu de Lapparent, Shadi Sharif Azadeh, Anna Fernández Antolín, Evanthia Kazagli, Yousef Maknoon, Iliya Markov

Transport and Mobility Laboratory

Introduction

The role of transportation systems is to:

- Move people and goods;
 - From one place (origin) to another (destination);
- Safely;
- Efficiently;
- With a minimum of negative impacts (congestion, discomfort, noise, pollution, accidents,...).

The role of mathematical models

- Transportation systems are complex:
 - their elements are complex;
 - their interactions are complex.
- Need to simplify in order to be able to:
 - describe;
 - design;
 - predict;
 - optimize.

Need for Decision-aid Systems

In this course...

- Part 1: Operational models on the demand side:
 - Methodology: choice models;
 - Applications: transportation mode choice.

```
Lectures: Matthieu de Lapparent, Labs: Anna Fernández Antolín, Evanthia Kazagli
```

- Part 2: Operational research problems in transportation:
 - Methodology: operations research;
 - Applications: scheduling for airlines, ports, railways.

```
Lectures: Shadi Sharif Azadeh, Labs: Yousef Maknoon, Iliya Markov.
```

Learning Goal

The course will

- Introduce decision-support methods for complex transportation problems
- Give practical hands-on experience of solving problems using software and real data

Learning Assessment

4 credits = 120 hours work (26 h. lectures, 26 h. labs) Grade consists of 3 components

- 2 graded hand-in assignments
 - One in choice models, one in operations research
 - Corresponds each to 20% of the grade
 - Based on team work (you will be assigned to a group)
 - Hand in joint report
- Final presentation
 - A problem assigned to each group in the last week of the course
 - 20 minute presentation in June (tbd)
 - Corresponds to 60% of grade

Transportation demand analysis

- Demand in transportation is a derived demand (an intermediate consumption).
 - A result of demand for something else.
- Travel results from a decision to make a trip, for a certain purpose
 (work, shopping, leisure), to a certain place (destination), by a certain
 mode (car, public transport, etc.), along a certain route, at a certain
 point in time (departure time).
- Direct demand:
 - wrt people: activities
 - wrt goods: consumption
- Demand/ supply interactions:
 - The level of service influences travel decisions
 - Travel decisions influence the level of service

Representations of the demand

- Aggregate representation:
 - Modeling element: flow
 - Flow: number of transported units (i.e. travelers, tons of freight, cars, flights, etc.) per unit of time, at a given location.
- Disaggregate representation:
 - Modeling element: the transported unit (i.e. travelers, etc.)
 - Individual behavior of the traveler, or of the actors of the logistic chain.

Representations of the supply

- Transportation supply = infrastructure;
- Network representation;
- Usually one network per mode (roads, railways, buses, airlines, etc.);
- Classical indicators associated with each link:
 - travel time;
 - cost;
 - flow (nbr of persons per unit of time);
 - capacity (= maximum flow);
- Static (average state) or dynamic (varies across time).

Modeling framework

- We focus on the transportation of people;
- Four step travel demand model;
- Decomposes the travel decision into 4 levels/ steps;
- Each step involves:
 - The description of a specific behavior:
 - Is a trip performed or not?
 - What is the destination?
 - What is the transportation mode?
 - What is the itinerary?
 - Data collection;
 - Modeling assumptions.

Four step model

Step 0: Preparing the scope of the analysis

Spatial scope:

- Identification of the relevant perimeter for the analysis;
- Partition of the perimeter into geographical zones (e.g. Lausanne: 500 zones);
- Assumption: trips within a zone are ignored.

Temporal scope:

 Identification of the period of the analysis (e.g. morning peak-hour, evening peak-hour etc.).

Perimeter

Zoning

Zoning

Zoning

Step 1: Trip generation

Is a trip performed or not?

- Derived demand
- Two successive activities are not proximal
- Data from Swiss Micro-census (1994-2010) \rightarrow

Travel purposes (contribution to daily travel distances) 1994-2010

Step 1: Trip generation (cont.)

- Land use, urban planning and transport are closely related.
- Question: where are the activities located?
- Main locations to identify in a city:
 - housing;
 - work places;
 - shops and commercial centres;
 - schools.
- Many studies focus on home-based trips.

Step 1: Trip generation (cont.)

Aggregate representation:

- For each zone, determine:
 - the number of trips originated from the zone (production);
 - the number of trips ending in the zone (attraction). during the analysis period

Modeling tool: linear regression

$$Y = \beta_0 + \beta_1 X$$

with, for instance, Y = number of trips, X = population

Disaggregate representation:

- Activity choice models;
- Location choice models.

Step 2: Trip distribution

What is the destination?

How many trips starting at a given origin are reaching a given destination?

- Aggregate representation: origin-destination (OD) matrix;
- Disaggregate representation: destination choice models.

Step 2: Trip distribution (cont.)

OD matrix

	D_1	D_2	D_j	
O_1	T_{11}	T_{12}	T_{1j}	• • •
O ₂ O _i	T_{21}	٠.		
O_i	T_{i1}		T_{ij}	
	:			·

- T_{ij} is the flow between origin i and destination j
- For each origin i, $\sum_i T_{ij} = O_i$
- For each destination j, $\sum_i T_{ij} = D_j$

Step 3: Modal split

What is the transportation mode? (Swiss example)

Step 3: Modal split

What is the transportation mode?

- Assume K modes
 - car (as driver);
 - car (as passenger);
 - bus;
 - metro;
 - bike;
 - motorbike;
 - walk;
 - etc.
- From OD matrix T, create K matrices T^k such that

$$T = \sum_{k=1}^{K} T^k$$

Step 3: Modal split (cont.)

• In practice, generate a split function *p* such that:

$$0 \le p(k|i,j) \le 1, \ \forall i,j,$$

and

$$\sum_{k=1}^{K} p(k|i,j) = 1, \ \forall i,j$$

Obviously, we have

$$T_{ij}^k = p(k|i,j)T_{ij}$$

- The split function p is derived from a mode choice model;
- This will be the main focus of part 1 of this course.

Step 4: Trip assignment

What is the itinerary?

Aggregate representation:

- Shortest path algorithm;
- Based on travel time, so "fastest path".

Disaggregate representation:

- Route choice models:
- Based on various indicators.

Note:

If many travelers use the best path, it will be congested...

...and it will not be the best anymore.

This is captured by the concept of "traffic equilibrium"

Summary

- Four step models
 - Generation:
 - ② Distribution;
 - Modal split;
 - 4 Assignment.
- Each step captures a type of choice
 - Activity location choice;
 - Destination choice;
 - Mode choice;
 - Q Route choice.

Main objective of the first part of this course:

Introduction to choice models: theory and case studies focusing on mode choice.

