Integrating Supply-Demand Relationship in the Design of Ideal Railway Timetables

Tomáš Robenek Yousef Maknoon Shadi Sharif Azadeh Michel Bierlaire Jianghang Chen

Decision-Aid Methodologies in Transportation

May 26, 2015

Economics 101

We Focus on Railway

Supply Planning

Transport Demand

Passenger Point of View

Waiting Time

Passenger Cost

Perceived cost of a given path using a given timetable (a path is defined as a sequence of train lines, in order to get from an origin to a destination):

$$C = \operatorname{argmin}\left(\alpha \cdot \sum_{i \in I} VT + \beta \cdot \sum_{j \in J'} WT + \gamma \cdot NT + \min\left(\epsilon \cdot SD_{e}, \eta \cdot SD_{l}\right)\right)$$

for all possible sets I, where:

- set of possible trains in a given path
- J^{\prime} set of transfers in a given path using given trains
- α value of time (monetary units per minute)
- β value of waiting time (monetary units per minute)
- γ penalty for having a transfer (monetary units)
- ϵ value of being early (monetary units per minute)
- η value of being late (monetary units per minute)

Decision Variables I

- - the total cost of a passenger with ideal time *t* between OD pair *i*
 - the total waiting time of a passenger with ideal time t between OD pair i
 - 1 if passenger with ideal time t between OD pair i chooses path p;
 0 - otherwise
 - the value of the scheduled delay of a passenger with ideal time t between OD pair i
 - the departure time of a train v on the line l (from its first station)

Decision Variables II

z'.

- 1 if a passenger with ideal time t between OD pair i on the path p takes the train v on the line l; 0 otherwise
 - dummy variable to help modeling the cyclicity corresponding to a train v on the line l
 - train occupation of a train v of the line / on a segment g
- number of train units of a train v on the line l
- 1 if a train v on the line l is being operated; 0 otherwise

max (<i>revenue – cost</i>)	(1)
passenger cost $\leq \epsilon$	(2)
cost function	(3)
at most one path per passenger	(4)
link trains with paths	(5)
cyclicity	(6)
train scheduling	(7)
train capacity	(8)
scheduled delay	(9)
waiting time	(10)

Case Study – Switzerland

⁰source: www.myswitzerland.com

S-Train Network Canton Vaud, Switzerland

SBB 2014 (5 a.m. to 9 a.m.)

- OD Matrix based on observation and SBB annual report
- 13 Stations
- 156 ODs
- 14 (unidirectional) lines
- 49 trains
- Min. transfer 4 mins
- VOT 27.81 CHF per hour
- 3 models current (SBB), cyclic (60 min cycle optimal), non-cyclic

Line	ID	From	То		Departures		
S 1	1	Yverdon-les-Bains	Villeneuve	-	6:19	7:19	8:19
	2	Villeneuve	Yverdon-les-Bains	5:24	6:24	7:24	8:24
S 2	3	Vallorbe	Palézieux	5:43	6:43	7:43	8:43
	4	Palézieux	Vallorbe	-	6:08	7:08	8:08
S 3	5	Allaman	Villeneuve	-	6:08	7:08	8:08
	6	Villeneuve	Allaman	-	6:53	7:53	8:53
S4	7	Allaman	Palézieux	5:41	6:41	7:41	8:41
	8	Palézieux	Allaman	-	6:35	7:35	8:35
\$11	9	Yverdon-les-Bains	Lausanne	5:26*	6:34	7:34	8:34
	10	Lausanne	Yverdon-les-Bains	5:55	6:55	7:55	8:55
S21	11	Payerne	Lausanne	5:39	6:39	7:38*	8:39
	12	Lausanne	Payerne	5:24	6:24	7:24	8:24
621	13	Vevey	Puidoux-Chexbres	-	6:09	7:09	8:09
331	14	Puidoux-Chexbres	Vevey	-	6:31*	7:36	8:36

Results of the Current Model for the Base Case

€ [%]	0	20	40	60	80	100	100*
profit [CHF]	53 067	52 926	50 730	49 564	13 826	4 211	-27 168
cost [CHF]	588 934	505 899	422 864	339 828	256 793	173 759	173 758
ub/lb [CHF]	54 046	54 598	54 776	54 394	54 600	51 195	168 016
gap [%]	1.84	3.16	7.98	9.74	294.91	1115.74	3.30
gap [CHF]	979	1 672	4 046	4 830	40 774	46 984	5 742
drivers [-]	17	17	22	22	46	48	49
rolling stock [-]	32	32	32	32	46	55	98
covered [%]	99.35	99.34	100.00	100.00	100.00	100.00	100.00

Pareto Frontier of the Current Model for the Base Case

Passenger Congestion

TOC Profit as a Function of the Demand

Difference in profit as a function of the demand for the current model

Passenger Cost as a Function of the Demand

Passenger Cost Difference as Compared to the Current Model

Pareto Frontiers of the Congested Case

Conclusions

- We formulate the ITTP problem
 - max profit or min pax cost
 - cyclic or non-cyclic timetables
 - pax flows (connections)
- TOC can choose the best trade-off between cost and profit
- Non-cyclic timetable is more flexible

Future Work

- Heuristics
- Full day
- Full comparison of cyclic vs. non-cyclic timetable

Thank you for your attention.