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Linear Integer Programming

Suppose � ∈ ��. If � = �, the integer programming problem is called pure
integer programming problem; otherwise, if � ≤ �, the problem is called mixed
integer programming (MIP). MIP have extremely wide applications in practice.



The relaxation of integer programming problem

The linear relaxation problem of an integer programming problem is very crucial
since it provides useful bound information for the integer one.

Question: if the sense of the objective function is minimization, the optimal value
of the linear relaxation problem is a/an (lower/upper) bound of the integer
programming problem?



ILP characteristics

Model characteristics:
• All constraints and objective are linear
• Some or all of variables are integer
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The feasible region of an ILP



The feasible region of an ILP

The hatched region is called the convex hull of the feasible region of the integer
programming problem. The convex hull has an very important property:
Let 	 = {�� = �, � ≥ 0, �� ∈ �, ∀� ∈ �} and denote the convex hull for P as CH(P);
then the optimal solution of an integer programming problem is exactly the same
as its linear relaxation problem under the feasible region CH(P).



Well Known Integer Programming Problems

Unfortunately, how to obtain CH(P) for an integer programming problem is an
extremely hard problem (i.e., NP-hard (Non-deterministic Polynomial-time hard)).

Here are a list of some of the well known ILPs:

1. The assignment problem
2. The 0-1 knapsack problem
3. Set covering problem
4. Facility location problem
5. Traveling salesman problem



The assignment problem

There are � people available to carry out � jobs. Each person is assigned to carry out exactly
one job. Some individuals are better suited to particular jobs than others, so there is an
estimated cost ��� if person � is assigned to job �.
The goal is to find a minimum cost assignment

Sets:

Person

Job

Parameters:

: The cost associated to assining person i to job j

Variables:

x 1 if person i is assigned to job j, 0 otherwise
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The assignment problem

Assignement problem formulation allows for continuous values of decision variables.
However, there is always an optimal solution with integer values.

Unimodularity of the matrix of coefficients:

An integer matrix is totally unimodular if the determinant of every square submatrix has
value 0, +1, or −1. Unimodular matrix is a square integer matrix with determinant of +1 or -
1.



The 0-1 knapsack problem

We are given � items. The ��� item has weight �� (parameter) and its corresponding gain is

presented by �� (parameter.) Given a bound � on the weight that can be carried in a

knapsack, we would like to select items to maximize the total benefit. We define a binary
decision variable �� which is 1 if item � is chosen, and 0 otherwise. The knapsack problem

can then be formulated as:



Set covering problem

Given a number of regions, we decide where to install for example a set of emergency
service centers. The cost of installing a service center and to the region to which it serves
are known. e.g., if the center is a fire station, a station can serve those regions for which
rescue is guaranteed to arrive to the scene within 8 minutes. The goal is to choose a

minimum cost set of service centers so that each region is covered.
Sets:

   Regions

   Service center

Parameters:

1 if region i is covered by center j
a :  

0 otherwise

:  The cost of installing a service center j

Variables:

x 1 if center j is installed, 0 otherwise
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Facility location problem

Suppose we are given � potential facility locations and a list of � clients who need
to be served from these locations. There is a fixed cost �� of opening a facility at
location �, while there is a cost  �� of serving client � from facility �. The goal is to
select a set of facility locations and assign each client to one facility , while
minimizing the total cost.

Facility

Clients



Facility location problem

We define a binary decision variable !� which is 1 if facility � is opened, and 0
otherwise. In addition, we define another binary variable ��� , which is 1 if client
� is served by facility �, and 0 otherwise. The facility location problem can be
formulated as follows:

Each client is served by exactly one facility center

If client � is served by facility �, then � has to be open.
If facility � is closed then it can serve no one.  



Facility location problem

The power of binary decision variables: To model the requirement of “at least
one/exactly one/at most one".

In the facility location problem, we have used the “exactly one“ type constraints.

Question: in the facility location problem, if we impose another requirement -- at
most 2 locations can be chosen, then how to model?

Each client is served by exactly one facility center

Each client is served by at least one facility center

Each client is served by at most one facility center



Traveling salesman problem (TSP)

A salesman must visit each of � cities exactly once and then return to his starting point. The
time taken to travel from city � to city � is ���.
Objective: Find the order in which he should make his tour so as to finish as quickly as
possible.

Sets:

, City

Parameters:

: Traveling time between cities i and j 

Variables:

x 1 if person travels from i to j, 0 otherwise
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Is this model correctly represent the problem?

All nodes have exactly one entering and one exiting arcs 
to make sure all cities have been visited



Traveling salesman problem (TSP)

Sub-tour elimination constraints form:



Some modeling tips: If-Then Decision and the big M

If-then decision: For example: If "(�) ≥ 0 then % � ≥ 0

To mathematically express the above “if-then" decision, we can introduce an auxiliary binary
decision variable !. The meaning of ! is

To ensure such a relationship, let &  be a sufficiently large (small) positive number.

Then to enforce that if "(�) ≥ 0 then % � ≥ 0, we also need to add the following constraint:

The above method is usually called big-M method. Pro and Con of the big-M method:
Advantage: maintain the linearity of constraints
Disadvantage: adverse effect on the bound quality of the linear relaxation

problem if tight M is not used



Some modeling tips: If-Then Decision and the big M

Advantages of the big-M method:

Consider the following question:
Let � be the amount of useful knowledge that you will receive from this decision-aid
methodology course.

• Let ! =  1 if the lecturer is good; 0, otherwise.
• Let ' =  1 if you attend the course; 0, otherwise.
• Let � =  1 if you attend the laboratory; 0, otherwise.

Write the constraint stating that if the lecturer is good and you attend the course and the
laboratory, then the amount of knowledge you will learn from this course should be greater
than �.

• Some people will choose the constraint: � ≥ �. !. '. �

• By using big-M method, � ≥ � − &(3 − ! − ' − �)



Some modeling tips: If-Then Decision and the big M

Impact of the choice of big-M:



Some modeling tips: If-Then Decision and the big M



Some modeling tips: What is a good formulation

P3 is ideal, because now if we solve a linear program over P3, the optimal solution is at an
extreme point. In this case the corner points are integer and so the IP is solved

+ = { 0,0,0,0 , 1,0,0,0 , 0,1,0,0 , 0,0,1,0 , 0,0,0,1 , 0,1,0,1 , 0,0,1,1 }



Some modeling tips: What is a good formulation

Given a set + ⊆ ��, and two formulations 	- and 	. for +, 	- is a better formulation than 	.

if 	- ⊂ 	.. That is all the integer points inside 	. belong to 	-.

Equivalent formulation for a knapsack set

Looking again at the set
+ = { 0,0,0,0 , 1,0,0,0 , 0,1,0,0 , 0,0,1,0 , 0,0,0,1 , 0,1,0,1 , 0,0,1,1 }

At the three formulations,
	- = � ∈ 01 83�- + 61�. + 49�7 + 20�1 ≤ 100

	. = � ∈ 01: 4�- + 3�. + 2�7 + �1 ≤ 4

	7 =

� ∈ 01:  4�- + 3�. + 2�7 + �1 ≤ 4

       1�- + 1�. + 1�7 ≤ 1

       1�- + 1�1 ≤ 1

It is easily seen that 	7 ⊂ 	.  ⊂ 	-and it can be checked that 	7 = �:�; + , and 	7is thus an
ideal formulation.



Relaxation, bounds and optimality

How is it possible to prove that a given point +∗is optimal?
Fast reply:

We could use an algorithm that will find a decreasing sequence of upper bound and
increasing sequence of lower bound and stop when the difference between two
sequences is negligible.

Primal bounds:

Every feasible solution �∗in + provides a lower bound. (maximization problem)
For some problem finding feasible solution may be very difficult to obtain.

Dual bounds:

Finding upper bound for a maximization problem (lower bound for minimization
problem)

Approach:

Relaxation: replace a difficult max “min” IP by simpler optimization whose optimal
value is at least as large (small) as Z.



Relaxation, bounds and optimality

Relaxation possibilities:

1. Enlarge the set of feasible solution so that one optimizes over a large set (relax 
variable type)

2. Replace the objective function by a function that has the same or a larger value 
everywhere (relax constraints) such as TSP without sub-tour elimination.



Relaxation, bounds and optimality

Example:TSP

Relaxing variable type: all variables are fractional.
Relaxing sub-tour elimination constraints (That is, TPS reduces to an assignment problem).
Variable X is relaxed in this case.



Relaxation, bounds and optimality

Why sensitivity analysis important in practice ?

To obtain a primal (lower) bound, observe that (2,1) is a feasible solution, so we have the
lower bound ' ≥ 7. To obtain an upper bound, consider the linear programming relaxation.

The optimal solution is �∗ =
.>

?
, 3 with value '@A =

BC

?
. Thus, we obtain an upper bound

' ≤
BC

?
. Observing that the optimal value must be integer, we can round down to the nearest

integer and so obtain ' ≤ 8.

Optimal solution is between 7 and 8 ,   7<Z<8
As the coefficients are integer � it is either 

7 or 8 
Z:{7,8}

�=8

�=7



Relaxation, bounds and optimality

The impact of better formulation:

The definition of better formulation is intimately related to that of linear programming
relaxations. In particular better formulations gives tighter bound

Better model ���� better relaxation ���� finding optimal solution is faster

Proposition. 

If a relaxation RP is infeasible, the original problem IP is infeasible. 



Branch and Bound

Idea: How we can break the problem into a series of smaller problems that are easier to solve
the smaller problems, and then put the information together again to solve the original
problem.

Method: enumeration tree



Branch and bound



Branch and bound



Branch and bound



Branch and bound


