Decision Aid Methodologies In Transportation Lecture 2: Modeling

Mathematical Modeling

Linear Programming

Shadi SHARIF AZADEH Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

MyTosa

Catenary-free 100% electric urban public mass-transportation system

myTOSA is a simulation tool for the dimensioning, commercial promotion and case study set-up for ABB's revolutionary "catenary-free" 100% electric urban public masstransportation system TOSA 2013. The objective of the project is to provide a simulation tool that will allow ABB to perform the proper dimensioning, promote the commercial idea and allow for specific study cases for the implementation of ABB's new public electric transportation concept, namely TOSA.

Modulushca

Modular logistics units in shared co-modal networks

The objective is to achieve the first genuine contribution to the development of intercontinental logistics at the European level, in close coordination with North America partners and the international Physical Internet Initiative. The goal of the project is to enable operations with developed iso-modular logistics units of size adequate for real modal and co-modal flows of fast-moving consumer goods, providing a basis for an interconnected logistics system for 2030.

Problem definition

Special form of mathematical programming

Equations must be linear : Using arithmetic operation such as **addition** subtraction

- Y = a(X) + b
- The following terms are not linear!!

•
$$Y = X^a + b$$
; $XY = b$; $\frac{X}{Y} - b = Z$; $Y = a|X| + b$

Simple solution procedures

• Linear algebra, Simplex Method

Very **powerful**

Extremely large problems 100,000 variables 1000's of constraints

Useful design information by Sensitivity Analysis

Answers to "what if" questions

A glass company has three plants: aluminum frame and hardware, wood frame, glass and assembly. Two product with highest profit:

- Product 1: An 8-foot glass door with <u>aluminum</u> frame → plants 1 and 3
- Product 2: A 4 × 6 foot double hung wood <u>frame</u> window → plants 2 and 3

The <u>benefit</u> of selling a batch (including 20) of products 1 and 2 are \$3000 and \$5000 respectively.

Each batch of <u>product 1</u> produced per week uses <u>1 hour of production time per</u> week in <u>plant 1</u>, whereas only <u>4</u> hours per week plant 1 is available.

Each batch of <u>product 2</u> produced per week uses <u>2</u> hours of production time per week in <u>plant 2</u>, whereas only <u>12</u> hours per week plant 2 is available.

Each batch of <u>products 1 and 2</u> produced per week uses <u>3 and 2</u> hours of production time per week in <u>plant 3</u> respectively, whereas only <u>18</u> hours per week are available.

Formulation as a Linear Programming Problem

To formulate the mathematical (linear programming) model for this problem, let

- x_1 = number of batches of product 1 produced per week
- x_2 = number of batches of product 2 produced per week
- Z = total profit per week (in thousands of dollars) from producing these two products

Thus, x_1 and x_2 are the decision variables for the model and the objective function is as follows

•
$$Z = 3x_1 + 5x_2$$

The objective is to choose the values of x_1 and x_2 so as to maximize Z subject to the restrictions imposed on their values by the limited production capacities available in the three plants.

	Product per Bate	ion Time h, Hours	
	Pro	duct	Draduction Time
Plant	1	2	Available per Week, Hours
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

To summarize, in the mathematical language of linear programming, the problem to choose values of x_1 and x_2 so as to

Maximize
$$Z = 3x_1 + 5x_2$$

subject to the restrictions

 $x_1 \le 4$ $2x_2 \le 12$ $3x_1 + 2x_2 \le 18$ $x_1 \ge 0, x_2 \ge 0$

Terminology for Solutions of the Model

- Feasible solution: a solution for which all the <u>constraints are satisfied</u>.
- Infeasible solution: a solution for which <u>at least one constraint is violated</u>.
- Feasible region: the <u>collection</u> of all <u>feasible solutions</u>.
- No feasible solutions: It is possible for a problem to have no feasible solutions.

Optimal solution: a feasible solution that has the best objective value

General Solution Approach (Graphical Method)

Step 1: Find a corner point

An "initial feasible solution"

Step 2: Proceed to improved corner points

Step 3: Stop when no further improvements are possible

Step 4: For large problems, a variety of more sophisticated approaches are used!

Solution Calculations

Find a corner point

It is necessary to <u>solve system of constraint equations</u> from linear algebra, this requires working with <u>matrix of constraint equations</u>, specifically, manipulating the "determinants"

Amount of <u>effort</u> set by number of <u>constraints</u>. So number of constraints defines amount of effort. This is why <u>LP</u> can <u>handle</u> many <u>more decision variables</u> than <u>constraints</u>

SP-OR

Select improved corners

Standard Form of LP - Three Parts

 $\begin{array}{l} \underline{Objective\ function}\\ maximize\ or\ minimize\\ Y = \ \sum_{i=1}^{r} c_i\ X_i\\ Y = \ C_1 X_1 \ _+ \ C_2 X_2 \ + \ \ldots \ + \ C_n X_n\\ X_i \ known \ as \ decision \ variables \end{array}$

<u>Constraints</u>

subject to

$$a_{11}X_{1} + a_{12}X_{2} + \dots + a_{1nXn} = b_{1}$$

$$a_{21}X_{1} + a_{22}X_{2} + \dots + a_{2nXn} = b_{2}$$

...

$$a_{m1}X_{1} + am_{2}X_{2} + \dots + a_{mn}X_{n} = b_{m}$$

 $\frac{\text{Non-Negativity}}{x_i \ge 0 \text{ for all } i}$

Data needed for a linear programming model involving the allocation of resources to activities

	Resour	ce Usage p			
		Acti	Amount of		
Resource	1	2	 n	Resource Available	
1	a ₁₁	a ₁₂	 a _{1n}	<i>b</i> ₁	
2	a ₂₁	a ₂₂	 a _{2n}	b ₂	
т	<i>a</i> _{m1}	<i>a</i> _{m2}	 a _{mn}	b _m	
Contribution to Z per unit of activity	с ₁	C ₂	 Cn		

The Wyndor Glass Co. problem would have no feasible solutions if the constraint $3x_1 + 5x_2 \ge 50$ were added to the problem.

Multiple optimal solutions: Most problems will have just <u>one optimal solution</u>. However, it is <u>possible to have more than one</u>. This would occur in the example if the <u>profit per batch produced of product 2</u> were changed from \$5000 to \$2000. This changes the objective function to $Z = 3x_1 + 2x_2$ so that all the points on the line <u>segment connecting (2, 6) and (4, 3)</u> would be optimal. As in this case, any problem having <u>multiple optimal solutions</u> will have an infinite number of them, each with the <u>same optimal value of the objective function</u>.

No optimal solutions: Another possibility is that a problem has no optimal solutions. This occurs only if (1) it has <u>no feasible solutions</u> or (2) the <u>constraints do</u> <u>not prevent improving</u> the value of the <u>objective function</u> (Z) indefinitely in the <u>favorable direction</u> (positive or negative).

The latter case is referred to as having an **unbounded Z**. To illustrate, this case would result if the last two functional constraints were mistakenly deleted in the example.

A corner-point feasible (CPF) solution is a <u>solution</u> that lies at a <u>corner</u> of the feasible region.

Relationship between optimal solutions and CPF solutions: Consider any <u>linear</u> programming problem with <u>feasible solutions</u> and a <u>bounded</u> feasible region. The <u>problem must possess CPF solutions</u> and at least <u>one optimal solution</u>. Furthermore, the <u>best CPF solution must be an optimal solution</u>. Thus, if a problem has exactly <u>one optimal solution</u>, it <u>must be a CPF solution</u>. If the problem has <u>multiple optimal solutions</u>, at <u>least two must be CPF solutions</u>.

Origina			Standard Formulation							
max Z =	$100x_1 + 20$	00 <i>x</i> ₂			max	Z = 1	$00x_1 + 2$	200 <i>x</i>	2	
$\begin{array}{r} 4x_1 + 3x_2 \\ 2x_1 + x_2 \\ x_2 \\ x_1, \ x_2 \end{array}$	$\begin{array}{rrrr} \leq & 240 \\ \leq & 100 \\ \leq & 60 \\ \geq & 0. \end{array}$				$\frac{4}{2}$	$x_1 + 3$ $2x_1 + 2x_1 + 2x_2$, e_1 ,	$x_2 + e_1 x_2 + e_2 x_2 + e_3 e_2, e_3$	≥	240 100 60 0.	
	<i>C_j</i> —	10	0 200	0	0	0	Value	_		
C_B	Basics	X	$1 X_2$	e ₁	e_2	e_3	21			
0	e1	4	3	1	0	0	240			
0	e	2	1	0	1	0	100			
0	e ₃	0	1	0	0	1	60			
				0	0	0				
	$c_j - z_j$	10	0 200	0	0	0	0	_		

Coefficient of base variables in the objective function

Base variables

Reduced cost – Marginal profit

NSP-OR

OR

			100	200	0	0	0		
Cj			X 1	x ₂	e_1	e_2	e_3		
0	e ₁		4	3	1	0	0	240	Γ
0	e_2		2	1	0	1	0	100	
0	e_3		0	1	0	0	1	60	
Zj		0	0	0	0	0			
$c_j - z_j$		100	200	0	0	0	0		

 $Z = 100X_1 + 200X_2$

If we increase X_1 1 unit \rightarrow the objective increase 100 units If we increase X_2 1 unit \rightarrow the objective increase 200 units

In Maximization problem, the solution in simplex table is optimal if for all variables $c_j - zj \le 0$

		100	200	0	0	0	
Cj		x ₁	x ₂	e_1	e_2	e_3	-
0	e ₁	4	3	1	0	0	240
0	e_2	2	1	0	1	0	100
0	e_3	0	1	0	0	1	60
	Zj	0	0	0	0	0	
C	$\boldsymbol{z}_j - \boldsymbol{z}_j$	100	200	0	0	0	0

In Maximization problem, the solution in simplex table is optimal if for all variables $c_j - zj \le 0$

How much we can increase the value of X_2 ?

- We can increase the value till the value of other variables is nonnegative

If x_j is entering variable, it is sufficient to divide right hand side value with a_{ij} for all the constraints (non-zero value) we choose the smallest ratio

		100	200	0	0	0		
Cj		x ₁	x ₂	e_1	e_2	e_3	-	
0	e ₁	4	3	1	0	0	240	
0	e_2	2	1	0	1	0	100	
0	e_3	0	1	0	0	1	60	
	Zj	0	0	0	0	0		
C	$c_j - \mathbf{z}_j$	100	200	0	0	0	0	

Optimal solution?

Variation of Simplex Algorithm

<u>Big-M Method</u> <u>Equivalent to two phase simplex</u> General idea: penalizing in the objective function

 $\max Z = 100x_1 + 200x_2 - Ma_4$

$$\begin{array}{rcl} 4x_1 + 3x_2 + e_1 &=& 240\\ 2x_1 + x_2 + e_2 &=& 100\\ x_2 + e_3 &=& 60\\ x_1 - e_4 + a_4 &=& 10\\ x_1, \ x_2, \ e_1, \ e_2, \ e_3, \ e_4 &\geq& 0\\ a_4 \geq 0 \end{array}$$

For all algorithm and notations G=(V,A) represents the graph in which V is the set of nodes and A is the set of arcs.

Number of nodes = n in our example graph we have 6 nodes

Number of arcs = m in our example graph we have 9 arcs

We consider $V^{+(i)}$ as the set of imediate successor of node *i* and $V^{-(i)}$ as the set of immediate predecessor nodes.

In our example graph $V^{+(3)} = \{5,4\}$ and $V^{-(3)} = \{1,2\}$

A **chain** of a graph G is an alternating sequence of vertices x_0 , x_1 ,..., x_n beginning and ending with vertices in which each edge is incident with the two vertices immediately preceding and following it. if the first and the last node is the same we have the cycle.

For directed graph chain \rightarrow path and cycle \rightarrow directed cycle

Path={1,3,4,6} Directed cycle={4,6,5}

Modeling by Graphs-Min Cost Flow (shortest path)

Objective:

Maximize the green period of each light

Subject to known time of cycle

Minimum green duration for each direction

We associate a node for each route

Nodes are connected by an arc if they can perform simultaneously

Cover nodes with maximum clique (there is at least one subgraph of at least size m whose vertices are completely connected to each other)

 $K_1 = \{g,h,i\}, K_2 = \{g,b,f\}$ $K_3 = \{a,b\}, K_4 = \{b,j\}$ $K_5 = \{c,j\}, K_6 = \{d,j\}$ $K_7 = \{d,e\}, K_8 = \{e,i\}$

- $t = \{a, b, \dots, j\}$
- x_{K_t} : time period during which clique K_t is green
- S: minimum time of each direction staying green
- C: Total time of the cycle of repetition

K₈

K5

 K_7

K6

 K_1

KΔ

 K_2

K3

Software and Solvers

AMPL: A Modeling Language for Mathematical Programming

Free student version:

http://www.ampl.com/DOWNLOADS/index.html

Documentation

http://www.ampl.com/BOOK/download.html

Software and Solvers

CPLEX:

Very powerful solver can handle upto 1M variables Primal, dula, interior point , ... Linear programming, integer programming, quadratic programming Cost: 9600\$ Highest market share

X-Press

Primal is the same as CPLEX The other solvers are not comparable with CPLEX Cost: 9600\$

GUROBI

New solver Less developed than CPLEX Cost : 9600\$

NEOS (Network-Enabled Optimization System) Server

free Internet-based service for solving optimization problems You can use all the solvers free The program must be written with AMPL or GAMS

References

Richard de Neufville, Joel Clark and Frank R. Field, Intro. to Linear Programming, Massachusetts Institute of Technology.
Hiller, Liberman, Introduction to Operations Research, 7th edition, McGraw-Hill Companies, 2001
Laurence A. Wolsey, Integer Programming, Wiley-Interscience, 1998
Der-San Chen et al. Applied integer proragmming: Modeling and solution 2009

