Decision aid methodologies in transportation

Lecture 6: Miscellaneous Topics

Prem Kumar

prem.viswanathan@epfl.ch

Transport and Mobility Laboratory

Summary

- We learnt about the different scheduling models
- We also learnt about demand-supply interactions in the form of revenue management concepts
- Today, we will see further application of revenue management to airline industry
- Some more examples of integer programming formulations
- Lastly, some new applications

Revenue Management: H&S Airline

Given

A passenger intends to book a seat on CDG-GVA

Question

 Should you sell it or should you wait to sell the ticket for a passenger intending to book CDG-ZRH for a higher revenue?

Complexity

Airline Revenue Management

- Leg Optimization Set explicit allocation levels for accepting bookings on each flight leg
- Network Optimization Determine the optimal mix of path-class demand on the airline network

Airline RM: Network Optimization Model

- LP model to maximize revenue subject to capacity and demand constraints
- Network consists of all legs departing on a given departure date (a few thousands) and any path-class with a constituent leg departing on this date (up to a million)
- Model considers the following to determine demand:
 - cancellation forecast
 - no show forecast
 - upgrade potential
- The displacement cost of a leg/cabin is the "shadow price" of the corresponding capacity constraint of the LP

Airline RM: Network Optimization Formulation

• n Path-Classes: $f_1, f_2, ..., f_n$ fares

 d_1, d_2, \dots, d_n demand

 x_1, x_2, \dots, x_n decision variables

m Legs: c_1, c_2, \dots, c_m capacities

• Incidence Matrix $A=[a_{ji}]_{mxn}$

 $a_{ji} = 1$ if leg j belongs to path i, 0 otherwise

LP Model:

Maximize $\sum f_i x_i$

Subject To $\sum a_{ji} x_i \le c_j$ j = 1, 2, ..., m capacity constraints

 $0 \le x_i \le d_i$ i = 1, 2, ..., n demand constraints

Consider the following mathematical formulation:

$$\begin{aligned} & min c^{T} x \\ & Ax \leq b \\ & x \geq 0 \end{aligned}$$

- View this formulation as the one where x indicate different options and c^T the corresponding costs. However if an option is selected, a fixed cost is incurred by default
- PROBLEM: x = 0 or $x \ge k$
- How to formulate this?

• Use a binary auxiliary variable
$$y = \begin{cases} 0, & \text{for } x = 0 \\ 1, & \text{for } x \ge k \end{cases}$$

Add the following constraints:

```
x \le M \cdot y \text{ (M is an upperbound on x)}x \ge k \cdot yy \in \{0,1\}
```


• This can be applied even when x is not necessarily an integer

minimize
$$C(x)$$

 $Ax = b$
 $x \ge 0$

where:
$$C(x_i) = \begin{cases} 0 & \text{for } x_i = 0, \\ k_i + c_i x_i & \text{for } x_i > 0. \end{cases}$$

• Use auxiliary variable
$$y_i = \begin{cases} 0, & \text{for } x_i = 0 \\ 1, & \text{for } x_i > 0 \end{cases}$$

Add these constraints

$$\begin{vmatrix} x_i \le M \cdot y_i \\ C(x_i) = k_i \cdot y_i + c_i \cdot x_i \\ y_i \in \{0,1\} \end{vmatrix}$$

- Consider the following constraint: $x_1 + x_2 \le 5$
- If the constraint has to be absolutely satisfied, it is called a hard constraint
- However in some situations, you may be able to violate a constraint by incurring a penalty
- Such constraints are called **soft** constraints and they can be modeled as:

$$minimize \ c^{\mathsf{T}}x + Y \cdot 100$$

$$X_1 + X_2 \le 5 + Y$$

. . .

$$x \ge 0, Y \ge 0$$

How to consider variables with absolute values? Consider this:

$$\begin{aligned} & \underset{j}{\text{min }} \sum_{j} \left| y_{t} \right| \\ & \sum_{j} a_{j} x_{j,t} = b_{t} + y_{t} \\ & x_{j,t} \geq 0, y_{t} \text{ free} \end{aligned}$$

How to solve this type of formulation?

$$\begin{vmatrix} \mathbf{y}_{t} = \mathbf{y}_{t}^{+} - \mathbf{y}_{t}^{-} \\ \Rightarrow |\mathbf{y}_{t}| = \mathbf{y}_{t}^{+} + \mathbf{y}_{t}^{-} \end{vmatrix}$$

$$\min \sum_{t} (y_{t}^{+} + y_{t}^{-})$$

$$\sum_{j} a_{j} x_{j,t} = b_{t} + y_{t}^{+} - y_{t}^{-}$$

$$x_{j,t} \ge 0, y_{t}^{+} \ge 0, y_{t}^{-} \ge 0$$

- How to treat disjunctive programming?
- A mathematical formulation where we satisfy only one (or few) of two (or more) constraints

$$\begin{array}{c|c} \text{min} \sum_{j} w_{j} x_{j} \\ x_{k} - x_{j} \geq p_{k} \\ \text{or} \\ x_{j} - x_{k} \geq p_{j} \\ \dots \end{array} \qquad \begin{array}{c|c} \text{min} \sum_{j} w_{j} x_{j} \\ x_{k} - x_{j} \geq p_{k} - M_{1} \cdot y \\ x_{j} - x_{k} \geq p_{j} - M_{2} \cdot (1 - y) \\ \dots \\ y \in \{0,1\} \end{array}$$

- We started describing MIP with Transportation Problem
- But the problem can be solved with SIMPLEX method. Yes!
- Consider a mathematical formulation | min c^T x |

$$\begin{array}{c|c}
\mathbf{Min} \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
\mathbf{Ax} \leq \mathbf{b} \\
\mathbf{x} \geq \mathbf{0}
\end{array}$$

- Suppose all coefficients are integers and constraint matrix A has the property of TUM (Total UniModularity)
- TUM implies that every square sub-matrix has determinant value as 0, -1 or 1
- There exists an optimal integer solution x* which can be found using the simplex method

Optimization at Airports

Airport Gate Assignment: Objectives

- Given a set of flight arrivals and departures at a major hub airport, what is the *best* assignment of these incoming flights to airport gates so that all flights are gated?
- Gating constraints such as adjacent gate, LIFO gates, gate rest time, towing, push back time and PS gates are applicable

Airport Gate Assignment: Problem Instance

- One of the largest in the world
- Over 1200 flights daily
- Over 25 different fleet types handled
- 60 gates and several landing bays
- Around 50,000 connecting passengers

Terminology

 Adjacent Gates: Two physically adjacent gates such that when one gate has a wide bodied aircraft parked on it, the other gate cannot accommodate another wide body

Terminology

- Market: An origin-destination pair
- Turns: A pair of incoming and outgoing flights with the same aircraft or equipment
- Gate Rest: Idle time between a flight departure and next flight arrival to the gate. Longer gate rest helps pad any minor schedule delays, though at the cost of schedule feasibility
- PS Gates: Premium Service gates are a set of gates that get assigned to premium markets – typically where VIPs travel

Mathematical Model

Parameters

- a_i: scheduled arrival time of turn
- b_i: scheduled departure time of turn
- (k,l): two gates restricted in the adjacent pair
- E_k^1 , E_l^1 : sets of equipment types such that when an aircraft of a type in E_k^1 is occupying k, no aircraft of any type in E_l^1 may use l; and vice versa.

Decision variables

- $x_{ik} \in \{0,1\}$: 1 if turn i is assigned to gate k; 0 otherwise
- $y_i \in \{0,1\}$: 1 if turn i is not assigned to any gate; 0 otherwise

Mathematical Model

$$\sum_{i \in T} \sum_{k \in K} C_{ik} x_{ik} - C \sum_{i \in T} y_i$$

subject to:

$$\sum_{k \in K} x_{ik} + y_i = 1$$

$$i \in T$$

$$x_{ik} + x_{jk} \le 1$$

$$i, j \in T; k \in K : a_i < b_j + \alpha, a_j < b_i + \alpha, i \neq j$$

$$x_{ik} + x_{jl} \le 1$$

$$i, j \in TURNS; k, l \in GATES; (k, l) \in ADJACENT : a_i < a_j \land a_i < b_j$$

 $\land a_i < b_i, i \neq j; e_i \in E_k^1; e_i \in E_l^1$

Output: Gantt Charts

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Additional Objectives

Maximize Connection Revenues

 This gating objective identifies connections at risk for a hub station and gates the turns involved such that connection revenue is maximized

Maximize Schedule Robustness

 Flights must be gated based on the past pattern of flight delays to provide adequate gate rest between a departing flight and the next arriving flight

Maximize Manpower Productivity

 While gating the flights, employees could potentially waste a lot of time travelling between gates

Courtesy: Sergey Shebalov, Sabre Technologies

Optimization in Railways

Applications in Railways

- Locomotive Assignment
- Locomotive Refueling
- Revenue Management
- Locomotive Maintenance
- Platform Assignment
- Train-design
- Block-to-Train Assignment

Locomotive Assignment

- Basic Inputs
 - Train Schedule over a period of planning horizon
 - A set of locomotives, their current locations and properties
- Output
 - Assignment schedule of locomotives to trains
- Constraints
 - Locomotive maintenance
 - Tonnage and HP requirement of train
 - Several other constraints
- Objective
 - Cost minimization

Locomotive Assignment: Some Features

- A train is typically assigned a group of multiple locomotives called a <u>consist</u> that usually travels together
- Each train has a different <u>HP</u> and <u>Tonnage requirement</u>
 that depends on the number of cars attached
- Locomotives can either pull trains actively or <u>deadhead</u> on them.
- Locomotives can also <u>light travel</u>.
- Trains need not have the same daily schedule.

Locomotive Assignment: Mathematical Model

Decision Variables

- Locomotive-Train assignment schedule
- Active locomotives
- Deadhead locomotives
- Light travel locomotives

Parameters

- Locomotive availability, maintenance schedule and features
- Train schedule / time-table and train features
- Infrastructure features for sections and yards

Locomotive Assignment: Hard Constraints

- Horsepower requirements
- Tonnage requirements
- Fleet size limitations
- Consistency of the assignments
- Locomotive availability at yards and sections
- Repeatability of the solution
- Solution robustness and recoverability

Locomotive Assignment: Solution Methodology

Two-stage optimization allows us to reduce the problem size substantially while giving an opportunity to maintain consistency

Locomotive Assignment: Solution Methodology

 Determine the three sets of decision variables using a sequential process.

Railroad Blocking Problem

Problem:

- Origin-Destination of shipments given
- Each shipment contains different number of cars
- Train routes and time table known
- Capacity of the network and trains known

• Magnitude:

- Thousands of trains per month
- 50,000 100,000 shipments with an average of 10 cars (Ahuja et al)
- Design the network on which commodities flow

Comparison with Airline Schedule Design

Railroad Blocking Problem

Railroad Blocking Problem: Model

Decision Variables:

- Blocking arcs to a yard with origin (or destination) selected, or not
- Route followed by the shipments along the blocking arcs

Constraints:

- Number of blocking arcs at each node
- Volume of cars passing through each node
- Capacity of the network and train schedule

Objective Function:

 Minimize the number of intermediate handling and the sum of distance travelled (different objectives can be weighted)

Railroad Blocking Problem: Problem Scale

• Network size:

- 1,000 origins
- 2,000 destinations
- 300 yards
- Number of network design variables:
 - 1,000x300 + 300x300 + 300x2,000 \approx 1 million
- Number of flow variables:
 - 50,000 commodities flowing over 1 million potential arcs

Railroad Blocking Problem: Complexity

- Network design problems are complex for many reasons. Apart from the large number of variables, there can be several competing solutions with the same value of the objective function
- Problems with only a few hundred network design variables can be solved to optimality
- Railroads want a near-optimal and implementable solution within a few hours of computational time.

Reference: Ahuja et al: Railroad Blocking Problems

Railroad Blocking Problem: Solution Approach

- Integer Programming Based Methods
 - Slow and impractical for large scale instances

- Network Optimization Methods
 - Start with a feasible solutions
 - Gradually improve the solution one node at a time

Railroad Blocking Problem: Solution Approach

- Start with a feasible solution of the blocking problem
- Optimize the blocking solution at only one node (leaving the solution at other nodes unchanged) and reroute shipments
- Repeat as long as there are improvements.

Railroad Blocking Problem: Solution Approach

Problem instance could be solved for one node using CPLEX in one hour.

Railroad Blocking Problem: Future

- This is one of the ongoing research open problems that is currently being tackled by the railroad industry
- Of course there are many such interesting problems in railways and we could give example of only two in this lecture

