Decision aid methodologies in transportation

Lecture 6: Miscellaneous Topics

Prem Kumar
prem.viswanathan@epfl.ch
Transport and Mobility Laboratory

Summary

- We learnt about the different scheduling models
- We also learnt about demand-supply interactions in the form of revenue management concepts
- Today, we will see further application of revenue management to airline industry
- Some more examples of integer programming formulations
- Lastly, some new applications

Revenue Management: H\&S Airline

- Given
- A passenger intends to book a seat on CDG-GVA
- Question
- Should you sell it or should you wait to sell the ticket for a passenger intending to book CDG-ZRH for a higher revenue?
- Complexity

Airline Revenue Management

- Leg Optimization - Set explicit allocation levels for accepting bookings on each flight leg
- Network Optimization - Determine the optimal mix of path-class demand on the airline network

Airline RM: Network Optimization Model

- LP model to maximize revenue subject to capacity and demand constraints
- Network consists of all legs departing on a given departure date (a few thousands) and any path-class with a constituent leg departing on this date (up to a million)
- Model considers the following to determine demand:
- cancellation forecast
- no show forecast
- upgrade potential
- The displacement cost of a leg/cabin is the "shadow price" of the corresponding capacity constraint of the LP

TRANSP-OR

Airline RM: Network Optimization Formulation

- n Path-Classes: $\quad f_{1}, f_{2}, \ldots, f_{n}$ fares
$d_{1}, d_{2}, \ldots, d_{n}$ demand
$x_{1}, x_{2}, \ldots, x_{n}$ decision variables
- m Legs:
$\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{m}}$ capacities
- Incidence Matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ji}}\right]_{\mathrm{mxn}}$

$$
a_{\mathrm{ji}}=1 \text { if leg } \mathrm{j} \text { belongs to path } \mathrm{i}, 0 \text { otherwise }
$$

- LP Model:

$$
\begin{array}{lll}
\text { Maximize } & \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} & \\
\text { Subject To } & \sum \mathrm{a}_{\mathrm{ji}} \mathrm{x}_{\mathrm{i}} \leq \mathrm{c}_{\mathrm{j}} & \mathrm{j}=1,2, \ldots, \mathrm{~m} \text { capacity constraints } \\
& 0 \leq \mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{i}} & \mathrm{i}=1,2, \ldots, \mathrm{n} \text { demand constraints }
\end{array}
$$

Integer Programming: More Formulations

- Consider the following mathematical formulation:
$\min ^{\top} x$
$A x \leq b$
$x \geq 0$
- View this formulation as the one where x indicate different options and c^{\top} the corresponding costs. However if an option is selected, a fixed cost is incurred by default
- PROBLEM: $x=0$ or $x \geq k$
- How to formulate this?

Integer Programming: More Formulations

- Use a binary auxiliary variable $y=\left\{\begin{array}{l}0, \text { for } x=0 \\ 1, \text { for } x \geq k\end{array}\right.$
- Add the following constraints:

$$
\begin{aligned}
& x \leq M \cdot y(\mathrm{M} \text { is an upperbound on } \mathrm{x}) \\
& \mathrm{x} \geq \mathrm{k} \cdot \mathrm{y} \\
& \mathrm{y} \in\{0,1\} \\
& \hline
\end{aligned}
$$

Integer Programming: More Formulations

- This can be applied even when x is not necessarily an integer

minimize $C(x)$
$A x=b$
$x \geq 0$

$$
\begin{aligned}
& \text { where: } \\
& C\left(x_{i}\right)=\left\{\begin{array}{cc}
0 & \text { for } x_{i}=0, \\
k_{i}+c_{i} x_{i} & \text { for } x_{i}>0 .
\end{array}\right.
\end{aligned}
$$

- Use auxiliary variable $y_{i}=\left\{\begin{array}{l}0, \text { for } x_{i}=0 \\ 1, \text { for } x_{i}>0\end{array}\right.$
- Add these constraints

$$
\begin{aligned}
& x_{i} \leq M \cdot y_{i} \\
& C\left(x_{i}\right)=k_{i} \cdot y_{i}+c_{i} \cdot x_{i} \\
& \mathrm{y}_{i} \in\{0,1\}
\end{aligned}
$$

Integer Programming: More Formulations

- Consider the following constraint: $\mathrm{x}_{1}+\mathrm{x}_{2} \leq 5$
- If the constraint has to be absolutely satisfied, it is called a hard constraint
- However in some situations, you may be able to violate a constraint by incurring a penalty
- Such constraints are called soft constraints and they can be modeled as:

$$
\begin{aligned}
& \operatorname{minimize} c^{\top} x+Y \cdot 100 \\
& x_{1}+x_{2} \leq 5+Y \\
& \cdots \\
& x \geq 0, Y \geq 0
\end{aligned}
$$

Integer Programming: More Formulations

- How to consider variables with absolute values? Consider this:

$$
\begin{aligned}
& \min \sum_{j}\left|y_{t}\right| \\
& \sum_{j} a_{j} x_{j, t}=b_{t}+y_{t} \\
& x_{j, t} \geq 0, y_{t} \text { free }
\end{aligned}
$$

- How to solve this type of formulation?

$$
\begin{aligned}
& y_{t}=y_{t}^{+}-y_{t}^{-} \\
& \Rightarrow\left|y_{\mathrm{t}}\right|=y_{\mathrm{t}}^{+}+y_{\mathrm{t}}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \min \sum_{t}\left(y_{t}^{+}+y_{t}^{-}\right) \\
& \sum_{j} a_{j} x_{j, t}=b_{t}+y_{t}^{+}-y_{t}^{-} \\
& x_{j, t} \geq 0, y_{t}^{+} \geq 0, y_{t}^{-} \geq 0
\end{aligned}
$$

Integer Programming: More Formulations

- How to treat disjunctive programming?
- A mathematical formulation where we satisfy only one (or few) of two (or more) constraints

$\min \sum_{j} w_{j} x_{j}$
$x_{k}-x_{j} \geq p_{k}$
or
$x_{j}-x_{k} \geq p_{j}$
\ldots

$$
\begin{aligned}
& \min \sum_{j} w_{j} x_{j} \\
& x_{k}-x_{j} \geq p_{k}-M_{1} \cdot y \\
& x_{j}-x_{k} \geq p_{j}-M_{2} \cdot(1-y) \\
& \cdots \\
& y \in\{0,1\}
\end{aligned}
$$

Integer Programming: More Formulations

- We started describing MIP with Transportation Problem
- But the problem can be solved with SIMPLEX method. Yes!
- Consider a mathematical formulation $\begin{aligned} & \min ^{\top} x \\ & A x \leq b \\ & x \geq 0\end{aligned}$
- Suppose all coefficients are integers and constraint matrix A has the property of TUM (Total UniModularity)
- TUM implies that every square sub-matrix has determinant value as $0,-1$ or 1
- There exists an optimal integer solution x^{*} which can be found using the simplex method

Optimization at Airports

Airport Gate Assignment: Objectives

- Given a set of flight arrivals and departures at a major hub airport, what is the *best* assignment of these incoming flights to airport gates so that all flights are gated?
- Gating constraints such as adjacent gate, LIFO gates, gate rest time, towing, push back time and PS gates are applicable

Airport Gate Assignment: Problem Instance

- One of the largest in the world
- Over 1200 flights daily

- Over 25 different fleet types handled
- 60 gates and several landing bays
- Around 50,000 connecting passengers

Terminology

- Adjacent Gates: Two physically adjacent gates such that when one gate has a wide bodied aircraft parked on it, the other gate cannot accommodate another wide body

ECOLE POLYTECHNIQUE

Terminology

- Market: An origin-destination pair
- Turns: A pair of incoming and outgoing flights with the same aircraft or equipment
- Gate Rest: Idle time between a flight departure and next flight arrival to the gate. Longer gate rest helps pad any minor schedule delays, though at the cost of schedule feasibility
- PS Gates: Premium Service gates are a set of gates that get assigned to premium markets - typically where VIPs travel

ECOLE POLYTICHNIQUE

Mathematical Model

- Parameters
- a_{i} : scheduled arrival time of turn
- b_{i} : scheduled departure time of turn
- (k, l): two gates restricted in the adjacent pair
- E_{k}^{1}, E_{l}^{1} : sets of equipment types such that when an aircraft of a type in E_{k}^{1} is occupying k, no aircraft of any type in E_{l}^{1} may use l; and vice versa.
- Decision variables
- $x_{i k} \in\{0,1\}: 1$ if turn i is assigned to gate k ; 0 otherwise
- $y_{i} \in\{0,1\}: 1$ if turn i is not assigned to any gate; 0 otherwise

Mathematical Model

$$
\text { Maximize } \quad \sum_{i \in T} \sum_{k \in K} C_{i k} x_{i k}-C \sum_{i \in T} y_{i}
$$

subject to:

$$
\sum_{k \in K} x_{i k}+y_{i}=1 \quad i \in T
$$

$$
x_{i k}+x_{j k} \leq 1 \quad i, j \in T ; k \in K: a_{i}<b_{j}+\alpha, a_{j}<b_{i}+\alpha, i \neq j
$$

$$
x_{i k}+x_{j l} \leq 1 \quad i, j \in T U R N S ; k, l \in \operatorname{GATES} ;(k, l) \in \operatorname{ADJACENT}: a_{i}<a_{j} \wedge a_{i}<b_{j}
$$

$$
\wedge a_{j}<b_{i}, i \neq j ; e_{i} \in E_{k}^{1} ; e_{j} \in E_{l}^{1}
$$

Output: Gantt Charts

Additional Objectives

- Maximize Connection Revenues
- This gating objective identifies connections at risk for a hub station and gates the turns involved such that connection revenue is maximized
- Maximize Schedule Robustness
- Flights must be gated based on the past pattern of flight delays to provide adequate gate rest between a departing flight and the next arriving flight
- Maximize Manpower Productivity
- While gating the flights, employees could potentially waste a lot of time travelling between gates

Courtesy: Sergey Shebalov, Sabre Technologies

Optimization in Railways

Applications in Railways

- Locomotive Assignment
- Locomotive Refueling
- Revenue Management
- Locomotive Maintenance
- Platform Assignment
- Train-design
- Block-to-Train Assignment

Locomotive Assignment

- Basic Inputs
- Train Schedule over a period of planning horizon
- A set of locomotives, their current locations and properties
- Output
- Assignment schedule of locomotives to trains
- Constraints
- Locomotive maintenance
- Tonnage and HP requirement of train
- Several other constraints
- Objective
- Cost minimization

Locomotive Assignment: Some Features

- A train is typically assigned a group of multiple locomotives called a consist that usually travels together
- Each train has a different HP and Tonnage requirement that depends on the number of cars attached
- Locomotives can either pull trains actively or deadhead on them.
- Locomotives can also light travel.
- Trains need not have the same daily schedule.

Locomotive Assignment: Mathematical Model

- Decision Variables
- Locomotive-Train assignment schedule
- Active locomotives
- Deadhead locomotives
- Light travel locomotives
- Parameters
- Locomotive availability, maintenance schedule and features
- Train schedule / time-table and train features
- Infrastructure features for sections and yards

Locomotive Assignment: Hard Constraints

- Horsepower requirements
- Tonnage requirements
- Fleet size limitations
- Consistency of the assignments
- Locomotive availability at yards and sections
- Repeatability of the solution
- Solution robustness and recoverability

Locomotive Assignment: Solution Methodology

Two-stage optimization allows us to reduce the problem size substantially while giving an opportunity to maintain consistency

Locomotive Assignment: Solution Methodology

- Determine the three sets of decision variables using a sequential process.

Railroad Blocking Problem

- Problem:
- Origin-Destination of shipments given
- Each shipment contains different number of cars
- Train routes and time table known
- Capacity of the network and trains known
- Magnitude:
- Thousands of trains per month
- 50,000-100,000 shipments with an average of 10 cars (Ahuja et al)
- Design the network on which commodities flow

ECOLE POLYTICHNIQUE

Comparison with Airline Schedule Design

(f) f

ECOLE POLYTICHNIQUE
fedirale de Lausanne

Railroad Blocking Problem

Railroad Blocking Problem: Model

- Decision Variables:
- Blocking arcs to a yard with origin (or destination) selected, or not
- Route followed by the shipments along the blocking arcs
- Constraints:
- Number of blocking arcs at each node
- Volume of cars passing through each node
- Capacity of the network and train schedule
- Objective Function:
- Minimize the number of intermediate handling and the sum of distance travelled (different objectives can be weighted)

ECOLE POLYTECHNIQUE

Railroad Blocking Problem: Problem Scale

- Network size:
- 1,000 origins
- 2,000 destinations
- 300 yards
- Number of network design variables:
$-1,000 \times 300+300 \times 300+300 \times 2,000 \approx 1$ million
- Number of flow variables:
- 50,000 commodities flowing over 1 million potential arcs

Railroad Blocking Problem: Complexity

- Network design problems are complex for many reasons. Apart from the large number of variables, there can be several competing solutions with the same value of the objective function
- Problems with only a few hundred network design variables can be solved to optimality
- Railroads want a near-optimal and implementable solution within a few hours of computational time.

Railroad Blocking Problem: Solution Approach

- Integer Programming Based Methods
- Slow and impractical for large scale instances
- Network Optimization Methods
- Start with a feasible solutions
- Gradually improve the solution - one node at a time

Railroad Blocking Problem: Solution Approach

- Start with a feasible solution of the blocking problem
- Optimize the blocking solution at only one node (leaving the solution at other nodes unchanged) and reroute shipments
- Repeat as long as there are improvements.

Railroad Blocking Problem: Solution Approach

Problem instance could be solved for one node using CPLEX in one hour.

Railroad Blocking Problem: Future

- This is one of the ongoing research open problems that is currently being tackled by the railroad industry
- Of course there are many such interesting problems in railways and we could give example of only two in this lecture

