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Summary

● We learnt about the different scheduling models

● We learnt to formulate these sub-problems into mathematical
models

● We learnt to solve problems with different techniques such as
heuristics, branch and bound, tree search and column generation

● The models that we learnt so far assumed a fixed system capacity
and a known demand pattern

● Eventually capacity is assigned to the demand in such a way that the
revenue (or profits) are optimized

● So the moral of the story so far – demand is a “holy cow” while it is
only the supply that can be “flogged around”!



What is Revenue Management?

● Let us dissect our “holy cow” with a new dimension

● Revenue Management in most literature is defined as the art or
science of selling the right supply (seats, tickets, etc.) to the right
demand (customers) at the right time

● So far, we only talked about supply assignment to demand, but now
what is this “right” qualifier?

● What is the right timing?



● Consider the following simple example:

Downward sloping
demand curve
D = 100 - P

What price will
maximize revenue ?

Revenue Management: Example
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● Consider the following simple example:

Downward sloping
demand curve
D = 100 - P

Revenue is maximized 
when price = 500

Demand = 500

Revenue = 50 x 50 = 
2,500

Revenue Management: Example
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PRICE DEMAND 

1 99 

2 98 

… … 

98 2 

99 1 
 

Revenue Management: Example



• Suppose we could sell the product to each customer at the 
price he is “willing” to pay!

• Then total revenue would be 99 + 98 + … + 1

= 4,950

Revenue Management: Example



PRICE DEMAND 

80 20 

60 20 

40 20 

20 20 

TOTAL REVENUE 4000 
 

Revenue Management: Example

● Even partial segmentation helps:



● National Car Rental reported
annual incremental revenue
of $ 56 million on a base of $
750 million – a revenue gain
of over 7%

● RM allowed National Car
Rental to avoid liquidation
and return to profitability in
less than one year

Revenue Management: Success Stories



● Delta Airline reported annual
incremental revenue of $ 300 million
from an investment of $ 2 million – a ROI
of 150%

● American Airlines reported revenue gain
of $ 1.4 billion over a 3 year period.

● Austrian Airlines reported revenue gains
of 150 million Austrian Schillings in 1991-
92, in spite of a decrease in Load Factor

● People’s Express did not use RM – and
ceased to exist

Revenue Management: Success Stories



● National Broadcasting
Corporation implemented a
RM system for about $ 1 mio.

● It generated incremental
revenue of $ 200 mio on a
base of $ 9 bio in 4 years. This
is a revenue gain of over 2%
and ROI of 200%

Revenue Management: Success Stories



Hotels, Cruise, Casinos, Cargo, Railways…



Revenue Management: When it works

● Perishable product or service

● Fixed capacity

● Low marginal cost

● Demand fluctuations

● Advanced sales

● Market Segmentation



● Your first chance for hands on RM!

● How many seats should be allocated to Y and B fare classes 
respectively? You decide!

Fare   Allocation
Y 300 ?

B 120 ?
140

Revenue Management: Exercise



● Before you can determine the allocations to buckets you need to 
forecast the demand for each

● Do we need to forecast the demand for both Y and B classes?

● If Y demand came first RM would be unnecessary

● Just sell seats on a First Come First Served basis!

● Since B demand comes first we need to forecast Y demand and 
allocate inventory accordingly

● Forecasts should be accurate

● High forecasts spoilage

● Low forecasts spillage

Revenue Management: Demand Forecasting



● Objective: Obtain quick and robust forecasts.

● Number of forecasts: Typically around 

● 10,000 fare class demand forecasts, or

● 2,000,000 OD demand forecasts 

● every night for medium-sized airlines

Revenue Management: Demand Forecasting



● Booking curve, Cancellation curve

● No-shows, Spill, and Recapture

● Revenue values of volatile products

● Up-selling and cross-selling probabilities

● Parameters in the demand function

● Price elasticity of demand

What do we forecast?

Revenue Management: Demand Forecasting



● Time Series Methods

● Moving Averages

● Exponential Smoothing

● Regression 

● Pick-Up Forecasting

● Neural Networks 

● Bayesian Update Methods

Revenue Management: Demand Forecasting



Forecasting Methods
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Forecasting Methods

Time Series (Seasonality Removed)
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Time Series (Trend Removed)
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Forecasting Methods



Moving Average
k period moving average: Take the average of the last
k observations to predict the next observation
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Forecasting Methods



Exponential Smoothing

Tomorrow’s forecast = 
Today’s forecast + 

α Error in today’s forecast.

Forecasting Methods



Exponential Smoothing ( =0.3)
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Exponential Smoothing ( =0.7)
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Pick-Up Forecasting

-8 -7 -6 -5 -4 -3 -2 -1 0

6 3 11 4 9 8 13 3 13 9-Apr

8 6 6 3 16 11 5 4 2 10-Apr

1 2 0 0 3 6 2 6 8 11-Apr

6 0 4 1 2 6 3 2 ? 12-Apr

3 8 8 7 5 1 2 ? 13-Apr

1 0 2 6 6 4 ? 14-Apr

0 1 1 6 5 ? 15-Apr

1 11 12 6 ? 16-Apr

Days Prior to Usage Usage 

Date

Forecasting Methods



Neural Networks

Input Layer

Hidden Layer

Output Layer

Past Data

Forecasts

Forecasting Methods



The Problem
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Forecasting Methods: Unconstraining



The Method (The EM Algorithm)

Observed Demand
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Find the mean and the 
Standard deviation of the
non-truncated demand:

Mean (m) = (22+15+33+…+17)/7
= 21

Std. Dev. (s) = 6.11

Forecasting Methods: Unconstraining



The Method (The EM Algorithm)

Observed Demand

22

15

17

33

16

22

22

15

22

17

Unconstraining 17:

17

Forecasting Methods: Unconstraining



The Method (The EM Algorithm)
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Forecasting Methods: Unconstraining



The Method (The EM Algorithm)

Observed Demand

22

15

23.64

33

16

22

22

15

22

17

In a similar manner, handle the 
unconstraining of 22 and 15.

Forecasting Methods: Unconstraining



The Method (The EM Algorithm)
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Forecasting Methods: Unconstraining



The Method (The EM Algorithm)
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Forecasting Methods: Unconstraining



Revenue Management: Inventory Allocation

● Airlines have fixed capacity in the short run

● Airline seats are perishable inventory

● The problem - How should seats on a flight be allocated to
different fare classes

● Booking for flights open long before the departure date -
typically an year in advance

● Typically low yield passengers book early



● Leisure passengers are price sensitive and book early

● Business passengers value time and flexibility and usually
book late

● The Dilemma - How many seats should be reserved for high
yield demand expected to arrive late?

● Too much spoilage - the aircraft departs which empty seats
which could have been filled

● Too little spillage - turning away of high yield passengers
resulting in loss of revenue opportunity

Revenue Management: Inventory Allocation



 LOAD FACTOR 
EMPHASIS 

YIELD 
EMPHASIS 

REVENUE 
EMPHASIS 

Seats sold 
For $ 1000 

80 248 192 

Seats sold 
For $ 750 

280 40 132 

TOTAL 360 288 324 

LOAD FACTOR 90% 72% 81% 
REVENUE 290,000 278,000 291,000 

YIELD 805 965 898 
 

Need a Revenue Management System to 
balance load factor and yield

400 Seat Aircraft  - Two Fare Classes
(Example from Daudel and Vialle)

Load Factor versus Yield Emphasis



120 seats

Three fare classes, CHF 250, CHF 150, & CHF 100

Partitioned Booking Limits:

CHF 250

CHF 150

CHF 100

Inventory Allocation

Geneva-Paris-Geneva case study for Baboo



120 seats

Three fare classes, CHF 250, CHF 150, & CHF 100

Nested Booking Limits:

CHF 250
CHF 150

CHF 100

Inventory Allocation: Nesting



CHF 250

CHF 150

CHF 100

Protected for
250 fare

class

Protected for
250 & 150 fare

class

Inventory Allocation: Protection levels



● Total number of seats: 120

● Seats divided into two classes based on fare: CHF 250 and CHF 150.

● Demands are distinct.

● Low fare class demand occurs earlier than the high fare class demand.

Inventory Allocation: Two-class model



Demand

P
ro

b
ab

ili
ty

Higher Fare Class
= 40, = 15

Fare = CHF 250

Lower Fare Class
= 80, = 30

Fare = CHF 150

Inventory Allocation: Two-class model



45 seats have already been booked in the lower fare 
class. Should we allow the 46th booking in the same 
class?

Inventory Allocation: Two-class model



Revenue from the lower fare class:
RL = CHF150

Revenue from the higher fare class:
RH = CHF 0 if the higher fare demand < 74,

CHF 250 otherwise.

Expected Revenue from the higher fare class:
E(RH) = CHF 0 P(higher fare demand < 74)

+ CHF250 P(higher fare demand 74)

Inventory Allocation: Two-class model



Revenue from the lower fare class:
RL = CHF150

Revenue from the higher fare class:
RH = CHF 0 if the higher fare demand < 74,

CHF 250 otherwise.

Expected Revenue from the higher fare class:
E(RH) = CHF 0 0.9883       (Normal tables)

+ CHF250 0.0117 (Normal tables)
CHF 3

Inventory Allocation: Two-class model
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Inventory Allocation: Two-class model



Decision Rule

● Accept up to 86 reservations from the lower fare 

class and then reject further reservations from this 

class.

Littlewood’s rule

Inventory Allocation: Two-class model



● Our forecast improves?

● If the fare for the lower fare class drops?

What happens if

Inventory Allocation: Exercise



● Total number of seats: 120

● Seats divided into three classes: 

CHF 250, CHF 150, and CHF 100.

● Demands are distinct.

● Low fare class demand occurs earlier than the high fare class 

demand.

Inventory Allocation: Three-class model
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CHF 100 class
= 90, = 40

Higher Fare Class
= 40, = 15

Fare = CHF 250 Lower Fare Class
= 80, = 30

Fare = CHF 150

Inventory Allocation: Three-class model



● Step 1: Aggregate the demand and fares for the higher classes.

● Step 2: Apply Littlewood’s formula for two class model to obtain 
protection levels.

The EMSR-b Method

Inventory Allocation: Three-class model



Computing Protection Levels for the High & 
Medium Fare Classes: Aggregating Demand
(mH = 40, sH = 15; mM = 80, sM = 30; mL = 90, sL = 40)

High fare

Medium fare

Sum

Distribution of demand sum:
Normal with
Mean       = 40+80 = 120
Std. Dev. = (225+900) 

= 33.54

Inventory Allocation: Three-class model



Computing Protection Levels for the High & 
Medium Fare Classes: Aggregating Fares
( H = 40, FH = 250; M = 80, FM = 150; L = 90, FL = 100)

FAgg = (40 250 + 80 150)/(40+80)
= 183.33

Inventory Allocation: Three-class model



Computing Protection Levels for the High & 
Medium Fare Classes: Applying Littlewood’s
Formula
mAgg = 120, sAgg = 33.54,  FH = 183.33; 
mL = 90, sL = 40,       FL = 100   

Littlewood’s Formula:
Find x such that 
183.33 Prob(DemandAgg ≥ x) = 100

Inventory Allocation: Three-class model



Applying Littlewood’s Formula:  x = 116

So 116 seats are reserved for the CHF 250 
and CHF 150 fare classes.

Computing Protection Levels for the High & 
Medium Fare Classes: Applying Littlewood’s
Formula
mAgg = 120, sAgg = 33.54,  FH = 183.33; 
mL = 90, sL = 40,       FL = 100   

Inventory Allocation: Three-class model



Computing Protection Levels for the High Fare 
Class: Applying Littlewood’s Formula
mH = 40, sH = 15,  FH = 250; 
mM = 90, sM = 30,       FL = 150.    

Littlewood’s Formula:
Find x such that 
250 Prob(DemandH ≥ x) = 150

Inventory Allocation: Three-class model



Applying Littlewood’s Formula:  x = 36 

So 36 seats are reserved for the CHF 250 
fare classes.

Inventory Allocation: Three-class model

Computing Protection Levels for the High Fare 
Class: Applying Littlewood’s Formula
mH = 40, sH = 15,  FH = 250; 
mM = 90, sM = 30,       FL = 150.    



120 seats

36 seats
protected for
CHF 250 class

116 seats protected for CHF 250 & CHF 150 classes

Inventory Allocation: Three-class model



Capacity: 200 Seats

Room Type

Demand

FaresMean Std. Dev.

Executive 30 10 7000

Deluxe 50 20 6000

Special 80 25 4000

Normal 150 100 2500

Inventory Allocation: Four-class model



● Consider a booking request that comes for  the CHF 100 fare class

● Suppose that 25% of the people demanding bookings in the CHF 100 
fare class are willing to jump to the CHF 150 fare class if necessary 
(up-sell probability)

● Also suppose 2 seats are already booked for the CHF 100 fare class

Inventory Allocation: Willingness to pay



If we turn her away, then

● She may pay for higher class

● She may refuse and higher class demand < 118

● She may refuse and higher class demand 118

Inventory Allocation: Willingness to pay



If we turn her away, then expected value E = 0.25 150

● She may refuse and higher class demand < 118

● She may refuse and higher class demand 118

Inventory Allocation: Willingness to pay



If we turn her away, then expected value 
E = 
0.25 150
+
0

● She may refuse and higher class demand 118

Inventory Allocation: Willingness to pay



If we turn her away, then expected value
E = 
0.25 150
+
0
+
(1-0.25) 1833.33 Prob(DemandAgg 118)

Inventory Allocation: Willingness to pay



If E > 100, then 
we refuse the seat at CHF 100 but remain
open for booking it at 150; 

Else 
we book the seat at CHF 100.

Inventory Allocation: Willingness to pay



● All service industries, airlines in particular, need to manage 
limited capacity optimally

● Transferring capacity between compartments

● Upgrades

● Moving Curtains

● Changing aircraft capacity

● Upgrade/downgrade aircraft configuration

● Swapping aircraft

Capacity Management



69

Flight Overbooking

● Airlines overbook to compensate for pre-departure cancellation
and day of departure no-shows

● Spoilage cost - incurred due to insufficient OB

● Lost revenue from empty seat which could have been filled

● Denied Boarding Cost (DBC) - incurred due to too much OB

● Cash compensation

● Travel vouchers

● Meal and accommodation costs

● Seats on other airlines

● Cost of lost goodwill



70

Capacity

Expected
Cost of Spoilage
(Opportunity Lost)

Expected
Cost of Denied

Boardings

Expected Cost of Overbooking

Expected
Total Cost

Flight Overbooking



● Consider a fare class (with 120 seats) in a airline where 
booking starts 10 days in advance.

● Each day a certain (random) number of reservation requests 
come in.

● Each day a certain number of bookings get cancelled 
(cancellation fraction = 0.1).

Overbooking: Illustration



Day Bookings

1 14 14

2 -1 23 36

3 -1 -2 46 79

4 -1 -2 -5 17 88

5 -1 -2 -4 -2 50 129

6 -1 -2 -4 -2 -5 27 142

7 -1 -2 -3 -1 -5 -3 27 154

8 -1 -1 -3 -1 -4 -2 -3 33 172

9 -1 -1 -3 -1 -4 -2 -2 -3 14 169

10 -1 -1 -2 -1 -3 -2 -2 -3 -1 153

No Limits

Overbooking: Illustration



Day Bookings

1 14 14

2 -1 23 36

3 -1 -2 46 79

4 -1 -2 -5 17 88

5 -1 -2 -4 -2 41 120

6 -1 -2 -4 -2 -4 13 120

7 -1 -2 -3 -1 -4 -1 12 120

8 -1 -1 -3 -1 -3 -1 -1 11 120

9 -1 -1 -3 -1 -3 -1 -1 -1 12 120

10 -1 -1 -2 -1 -3 -1 -1 -1 -1 108

No Overbooking

Overbooking: Illustration



Day Bookings

1 14 14

2 -1 23 36

3 -1 -2 46 79

4 -1 -2 -5 17 88

5 -1 -2 -4 -2 50 129

6 -1 -2 -4 -2 -5 15 130

7 -1 -2 -3 -1 -5 -2 14 130

8 -1 -1 -3 -1 -4 -1 -1 12 130

9 -1 -1 -3 -1 -4 -1 -1 -1 13 130

10 -1 -1 -2 -1 -3 -1 -1 -1 -1 118

Overbooking 10 seats

Overbooking: Illustration
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Overbooking: Illustration



Cancellations 

● Customers cancel independently of each other.

● Each customer has the same probability of cancelling.

● The cancellation probability depends only on the time remaining.

Overbooking: Concept



Let
Y : number of reservations at hand, and 
q : probability of showing up for each reservation.

Then 
the number of reservations that show up

Binomial with mean qY, and variance q(1-q)Y.

We can approximate this with
Normal with mean qY, and variance q(1-q)Y.

Overbooking: Concept



Criterion – Type I service level: The probability that the demand 
that shows up exceeds the capacity.

qY

The demand that
shows up on the
day of service.   
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capacity

Type I service
level

Overbooking: Concept



Criterion – Type I service level: 

Capacity: 200 seats

Showing up probability: 0.9

Reqd. Type I service level: 0.5%

Overbooking limit?

Overbooking: Concept



Let the limit be Y.

0.9Ydemand
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200

Variance = 0.9 0.1 Y

Y turns out to be 219.

Overbooking: Concept



● Criterion – Type II service level: The fraction of customers
denied service in the long run i.e. (Expected number of
customers denied service / Expected number of customers )

● Criterion – Minimize Spillage and Spoilage costs

Overbooking: Concept



Capacity

Overbooking
Limit

Time

Cancellation Probabilities remain constant over
time

Overbooking: Cancellation probabilities



Cancellation Probabilities decreasing with
time

Capacity

Overbooking
Limit

Time

Overbooking: Cancellation Probabilities


