Decision aid methodologies in transportation

Lecture 5: Revenue Management

Prem Kumar

prem.viswanathan@epfl.ch

Transport and Mobility Laboratory

* Presentation materials in this course uses some slides of Dr Nilotpal Chakravarti and Prof Diptesh Ghosh

Summary

- We learnt about the different scheduling models
- We learnt to formulate these sub-problems into mathematical models
- We learnt to solve problems with different techniques such as heuristics, branch and bound, tree search and column generation
- The models that we learnt so far assumed a fixed system capacity and a known demand pattern
- Eventually capacity is assigned to the demand in such a way that the revenue (or profits) are optimized
- So the moral of the story so far demand is a "holy cow" while it is only the supply that can be "flogged around"!

What is Revenue Management?

- Let us dissect our "holy cow" with a new dimension
- Revenue Management in most literature is defined as the art or science of selling the <u>right</u> supply (seats, tickets, etc.) to the <u>right</u> demand (customers) <u>at the right time</u>
- So far, we only talked about supply assignment to demand, but now what is this "right" qualifier?
- What is the right timing?

• Consider the following simple example:

Downward sloping demand curve D = 100 - P

What price will maximize revenue ?

• Consider the following simple example:

Downward sloping demand curve D = 100 - P

Revenue is maximized when price = 500 Demand = 500 Revenue = 50 x 50 = 2,500

PRICE	DEMAND
1	99
2	98
•••	•••
98	2
99	1

- Suppose we could sell the product to each customer at the price he is "willing" to pay!
- Then total revenue would be 99 + 98 + ... + 1

= 4,950

• Even partial segmentation helps:

PRICE	DEMAND
80	20
60	20
40	20
20	20
TOTAL REVENUE	4000

Revenue Management: Success Stories

- National Car Rental reported annual incremental revenue of \$ 56 million on a base of \$ 750 million – a revenue gain of over 7%
- RM allowed National Car Rental to avoid liquidation and return to profitability in less than one year

Revenue Management: Success Stories

- Delta Airline reported annual incremental revenue of \$ 300 million from an investment of \$ 2 million – a ROI of 150%
- American Airlines reported revenue gain of \$ 1.4 billion over a 3 year period.
- Austrian Airlines reported revenue gains of 150 million Austrian Schillings in 1991-92, in spite of a decrease in Load Factor
- People's Express did not use RM and ceased to exist

Revenue Management: Success Stories

- National Broadcasting Corporation implemented a RM system for about \$1 mio.
- It generated incremental revenue of \$ 200 mio on a base of \$ 9 bio in 4 years. This is a revenue gain of over 2% and ROI of 200%

Hotels, Cruise, Casinos, Cargo, Railways...

Revenue Management: When it works

- Perishable product or service
- Fixed capacity
- Low marginal cost
- Demand fluctuations
- Advanced sales
- Market Segmentation

Revenue Management: Exercise

	Fare	Allocation
Y	300	?
В	120	?
		140

- Your first chance for hands on RM!
- How many seats should be allocated to Y and B fare classes respectively? You decide!

- Before you can determine the allocations to buckets you need to forecast the demand for each
- Do we need to forecast the demand for both Y and B classes?
- If Y demand came first RM would be unnecessary
 - Just sell seats on a First Come First Served basis!
- Since B demand comes first we need to forecast Y demand and allocate inventory accordingly
- Forecasts should be accurate
 - High forecasts ______ spoilage
 - Low forecasts → spillage

- Objective: Obtain quick and robust forecasts.
- Number of forecasts: Typically around
 - 10,000 fare class demand forecasts, or
 - 2,000,000 OD demand forecasts
 - every night for medium-sized airlines

What do we forecast?

- Booking curve, Cancellation curve
- No-shows, Spill, and Recapture
- Revenue values of volatile products
- Up-selling and cross-selling probabilities
- Parameters in the demand function
- Price elasticity of demand

- Time Series Methods
 - Moving Averages
 - Exponential Smoothing
- Regression
- Pick-Up Forecasting
- Neural Networks
- Bayesian Update Methods

Time Series (Seasonality Removed)

Time Series (Trend Removed)

Moving Average

k period moving average: Take the average of the last *k* observations to predict the next observation

Exponential Smoothing

Tomorrow's forecast = Today's forecast + $\alpha \times$ Error in today's forecast.

Exponential Smoothing (α =0.3)

Exponential Smoothing (α =0.7)

Pick-Up Forecasting

	D	ays	Pr	ior	to l	Isag	je		Usage
-8	-7	-6	-5	-4	ဒု	-2	7	0	Date
6	3	11	4	9	8	13	3	13	9-Apr
8	6	6	3	16	11	5	4	2	10-Apr
1	2	0	0	3	6	2	6	8	11-Apr
6	0	4	1	2	6	3	2	?	12-Apr
3	8	8	7	5	1	2	?		13-Apr
1	0	2	6	6	4	?			14-Apr
0	1	1	6	5	?				15-Apr
1	11	12	6	?					16-Apr

The Problem

True Demand	Booking Limits	Observed Demand
22	24	22
15	20	15
24	17	17
33	35	33
16	16	16
26	22	22
22	22	22
23	15	15
22	22	22
17	17	17

Unconstraining

The Method (The EM Algorithm)

Observed Demand
22
15
17
33
16
22
22
15
22
17

Find the mean and the Standard deviation of the non-truncated demand:

Mean (m) = (22+15+33+...+17)/7 = 21 Std. Dev. (s) = 6.11

The Method (The EM Algorithm)

Observed Demand
22
15
17
33
16
22
22
15
22
17

Unconstraining 17:

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

The Method (The EM Algorithm)

Observed Demand
22
15
17
33
16
22
22
15
22
17

Unconstraining 17:

The Method (The EM Algorithm)

Observed Demand
22
15
23.64
33
16
22
22
15
22
17

In a similar manner, handle the unconstraining of 22 and 15.

The Method (The EM Algorithm)

Observed Demand
22
15
23.64
33
16
26.53
22
22.79
22
17

True Demand
22
15
24
33
16
26
22
23
22
17

The Method (The EM Algorithm)

Revenue Management: Inventory Allocation

- Airlines have fixed capacity in the short run
- Airline seats are perishable inventory
- The problem How should seats on a flight be allocated to different fare classes
- Booking for flights open long before the departure date typically an year in advance
- Typically low yield passengers book early

Revenue Management: Inventory Allocation

- Leisure passengers are price sensitive and book early
- Business passengers value time and flexibility and usually book late
- The Dilemma How many seats should be reserved for high yield demand expected to arrive late?
 - Too much spoilage the aircraft departs which empty seats which could have been filled
 - Too little spillage turning away of high yield passengers resulting in loss of revenue opportunity

Load Factor versus Yield Emphasis

400 Seat Aircraft - Two Fare Classes (Example from Daudel and Vialle)

	LOAD FACTOR YIELD		REVENUE
	EMPHASIS	EMPHASIS	EMPHASIS
Seats sold	80	248	192
For \$ 1000			
Seats sold	280	40	132
For \$ 750			
TOTAL	360	288	324
LOAD FACTOR	90%	72%	81%
REVENUE	290,000	278,000	291,000
YIELD	805	965	898

Need a Revenue Management System to balance load factor and yield

Inventory Allocation

Geneva-Paris-Geneva case study for Baboo

120 seats

Three fare classes, CHF 250, CHF 150, & CHF 100

Partitioned Booking Limits:

Inventory Allocation: Nesting

120 seats

Three fare classes, CHF 250, CHF 150, & CHF 100

Nested Booking Limits:

Inventory Allocation: Protection levels

- Total number of seats: 120
- Seats divided into two classes based on fare: CHF 250 and CHF 150.
- Demands are distinct.
- Low fare class demand occurs earlier than the high fare class demand.

Probability

NSP-OR

Demand

Lower Fare Class μ= 80, σ = 30 Fare = CHF 150

45 seats have already been booked in the lower fare class. Should we allow the 46th booking in the same class?

Revenue from the lower fare class: $R_L = CHF150$

Revenue from the higher fare class: R_H = CHF 0 if the higher fare demand < 74, CHF 250 otherwise.

Expected Revenue from the higher fare class: $E(R_H) = CHF 0$ P(higher fare demand < 74) + CHF250 P(higher fare demand \geq 74)

Revenue from the lower fare class: $R_1 = CHF150$

Revenue from the higher fare class: R_H = CHF 0 if the higher fare demand < 74, CHF 250 otherwise.

Expected Revenue from the higher fare class: E(R_H) = CHF 0 0.9883 *(Normal tables)* + CHF250 0.0117 *(Normal tables)* ≈ CHF 3

Expected Revenue from the Higher Class

Decision Rule

 Accept up to 86 reservations from the lower fare class and then reject further reservations from this class.

Littlewood's rule

Inventory Allocation: Exercise

What happens if

- Our forecast improves?
- If the fare for the lower fare class drops?

- Total number of seats: 120
- Seats divided into <u>three</u> classes: CHF 250, CHF 150, and CHF 100.
- Demands are distinct.
- Low fare class demand occurs earlier than the high fare class demand.

The EMSR-b Method

- Step 1: Aggregate the demand and fares for the higher classes.
- Step 2: Apply Littlewood's formula for two class model to obtain protection levels.

Computing Protection Levels for the High & Medium Fare Classes: Aggregating Demand $(m_H = 40, s_H = 15; m_M = 80, s_M = 30; m_L = 90, s_L = 40)$

Distribution of demand sum: Normal with Mean = 40+80 = 120 Std. Dev. = $\sqrt{(225+900)}$ = 33.54

Computing Protection Levels for the High & Medium Fare Classes: Aggregating Fares ($\mu_{H} = 40, F_{H} = 250; \mu_{M} = 80, F_{M} = 150; \mu_{L} = 90, F_{L} = 100$)

$$F_{Agg} = (40 \ 250 + 80 \ 150)/(40+80)$$

= 183.33

Computing Protection Levels for the High & Medium Fare Classes: Applying Littlewood's Formula

$$m_{Agg} = 120, \quad s_{Agg} = 33.54, \quad F_{H} = 183.33;$$

 $m_{L} = 90, \quad s_{L} = 40, \quad F_{L} = 100$

Littlewood's Formula: Find x such that 183.33 Prob(Demand_{Agg} \ge x) = 100

Computing Protection Levels for the High & Medium Fare Classes: Applying Littlewood's Formula

$$m_{Agg} = 120, \quad s_{Agg} = 33.54, \quad F_{H} = 183.33;$$

 $m_{L} = 90, \quad s_{L} = 40, \quad F_{L} = 100$

Applying Littlewood's Formula: x = 116

So 116 seats are reserved for the CHF 250 and CHF 150 fare classes.

Computing Protection Levels for the High FareClass: Applying Littlewood's Formula $m_H = 40$, $s_H = 15$, $F_H = 250$; $m_M = 90$, $s_M = 30$, $F_L = 150$.

Littlewood's Formula: Find x such that 250 Prob(Demand_H \ge x) = 150

Computing Protection Levels for the High FareClass: Applying Littlewood's Formula $m_H = 40$, $s_H = 15$, $F_H = 250$; $m_M = 90$, $s_M = 30$, $F_L = 150$.

Applying Littlewood's Formula: x = 36

So 36 seats are reserved for the CHF 250 fare classes.

116 seats protected for CHF 250 & CHF 150 classes

Capacity: 200 Seats

	De		
Room Type	Mean	Std. Dev.	Fares
Executive	30	10	7000
Deluxe	50	20	6000
Special	80	25	4000
Normal	150	100	2500

- Consider a booking request that comes for the CHF 100 fare class
- Suppose that 25% of the people demanding bookings in the CHF 100 fare class are willing to jump to the CHF 150 fare class if necessary (up-sell probability)
- Also suppose 2 seats are already booked for the CHF 100 fare class

If we turn her away, then

- She may pay for higher class
- She may refuse and higher class demand < 118
- She may refuse and higher class demand \geq 118

If we turn her away, then expected value E = 0.25×150

- She may refuse and higher class demand < 118
- She may refuse and higher class demand ≥ 118

If we turn her away, then expected value E = 0.25 × 150 + 0

- She may refuse and higher class demand ≥ 118

If we turn her away, then expected value E = 0.25×150 + 0+ $(1-0.25) \times 1833.33 \times Prob(Demand_{Agg} \ge 118)$

If E > 100, then

we refuse the seat at CHF 100 but remain open for booking it at 150;

Else

we book the seat at CHF 100.

Capacity Management

- All service industries, airlines in particular, need to manage limited capacity optimally
- Transferring capacity between compartments
 - Upgrades
 - Moving Curtains
- Changing aircraft capacity
 - Upgrade/downgrade aircraft configuration
 - Swapping aircraft

Flight Overbooking

- Airlines overbook to compensate for pre-departure cancellation and day of departure no-shows
- Spoilage cost incurred due to insufficient OB
 - Lost revenue from empty seat which could have been filled
- Denied Boarding Cost (DBC) incurred due to too much OB
 - Cash compensation
 - Travel vouchers
 - Meal and accommodation costs
 - Seats on other airlines
 - Cost of lost goodwill

Flight Overbooking

Expected Cost of Overbooking

Overbooking: Illustration

- Consider a fare class (with 120 seats) in a airline where booking starts 10 days in advance.
- Each day a certain (random) number of reservation requests come in.
- Each day a certain number of bookings get cancelled (cancellation fraction = 0.1).

Overbooking: Illustration

Day	No Limits								Bookings	
1	14									14
2	-1	23								36
3	-1	-2	46							79
4	-1	-2	-5	17						88
5	-1	-2	-4	-2	50					129
6	-1	-2	-4	-2	-5	27				142
7	-1	-2	-3	-1	-5	-3	27			154
8	-1	-1	-3	-1	-4	-2	-3	33		172
9	-1	-1	-3	-1	-4	-2	-2	-3	14	169
10	-1	-1	-2	-1	-3	-2	-2	-3	-1	153
RANSP-OR										

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
Overbooking: Illustration

Day	No Overbooking									Bookings
1	14									14
2	-1	23								36
3	-1	-2	46							79
4	-1	-2	-5	17						88
5	-1	-2	-4	-2	41					120
6	-1	-2	-4	-2	-4	13				120
7	-1	-2	-3	-1	-4	-1	12			120
8	-1	-1	-3	-1	-3	-1	-1	11		120
9	-1	-1	-3	-1	-3	-1	-1	-1	12	120
10	-1	-1	-2	-1	-3	-1	-1	-1	-1	108

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Overbooking: Illustration

Day	Overbooking 10 seats									Bookings
1	14									14
2	-1	23								36
3	-1	-2	46							79
4	-1	-2	-5	17						88
5	-1	-2	-4	-2	50					129
6	-1	-2	-4	-2	-5	15				130
7	-1	-2	-3	-1	-5	-2	14			130
8	-1	-1	-3	-1	-4	-1	-1	12		130
9	-1	-1	-3	-1	-4	-1	-1	-1	13	130
10	-1	-1	-2	-1	-3	-1	-1	-1	-1	118
ANSP-OR										

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Overbooking: Illustration

Cancellations

- Customers cancel independently of each other.
- Each customer has the same probability of cancelling.
- The cancellation probability depends only on the time remaining.

Let

Y : number of reservations at hand, and

q : probability of showing up for each reservation.

Then the number of reservations that show up \approx Binomial with mean qY, and variance q(1-q)Y.

We can approximate this with Normal with mean qY, and variance q(1-q)Y.

Criterion – Type I service level: The probability that the demand that shows up exceeds the capacity.

Criterion – Type I service level:

Capacity: 200 seats

Showing up probability: 0.9

Reqd. Type I service level: 0.5%

Overbooking limit?

Let the limit be Y.

- Criterion Type II service level: The fraction of customers denied service in the long run i.e. (Expected number of customers denied service / Expected number of customers)
- Criterion Minimize Spillage and Spoilage costs

Overbooking: Cancellation probabilities

Overbooking: Cancellation Probabilities

