Decision aid methodologies in transportation

Lecture 5: Revenue Management

Prem Kumar
prem.viswanathan@epfl.ch

Transport and Mobility Laboratory

Summary

- We learnt about the different scheduling models
- We learnt to formulate these sub-problems into mathematical models
- We learnt to solve problems with different techniques such as heuristics, branch and bound, tree search and column generation
- The models that we learnt so far assumed a fixed system capacity and a known demand pattern
- Eventually capacity is assigned to the demand in such a way that the revenue (or profits) are optimized
- So the moral of the story so far - demand is a "holy cow" while it is only the supply that can be "flogged around"!

What is Revenue Management?

- Let us dissect our "holy cow" with a new dimension
- Revenue Management in most literature is defined as the art or science of selling the right supply (seats, tickets, etc.) to the right demand (customers) at the right time
- So far, we only talked about supply assignment to demand, but now what is this "right" qualifier?
- What is the right timing?

Revenue Management: Example

- Consider the following simple example:

Revenue Management: Example

- Consider the following simple example:

Revenue Management: Example

PRICE	DEMAND
1	99
2	98
\ldots	\ldots
98	2
99	1

Revenue Management: Example

- Suppose we could sell the product to each customer at the price he is "willing" to pay!
- Then total revenue would be $99+98+\ldots+1$
= 4,950

Revenue Management: Example

- Even partial segmentation helps:

PRICE	DEMAND
80	20
60	20
40	20
20	20
TOTAL REVENUE	4000

Revenue Management: Success Stories

- National Car Rental reported annual incremental revenue of $\$ 56$ million on a base of $\$$ 750 million - a revenue gain of over 7\%
- RM allowed National Car Rental to avoid liquidation and return to profitability in less than one year

fedirale de Lausanne

Revenue Management: Success Stories

- Delta Airline reported annual incremental revenue of $\$ 300$ million from an investment of $\$ 2$ million - a ROI of 150%
- American Airlines reported revenue gain of $\$ 1.4$ billion over a 3 year period.
- Austrian Airlines reported revenue gains of 150 million Austrian Schillings in 1991-
 92, in spite of a decrease in Load Factor
- People’s Express did not use RM - and ceased to exist

Revenue Management: Success Stories

- National Broadcasting Corporation implemented a RM system for about \$ 1 mio.
- It generated incremental revenue of $\$ 200$ mio on a base of $\$ 9$ bio in 4 years. This is a revenue gain of over 2% and ROI of 200%

Hotels, Cruise, Casinos, Cargo, Railways...

Revenue Management: When it works

- Perishable product or service
- Fixed capacity
- Low marginal cost
- Demand fluctuations
- Advanced sales
- Market Segmentation

Revenue Management: Exercise

	Fare	Allocation
Y	300	$?$
		$?$
B	120	140

- Your first chance for hands on RM!
- How many seats should be allocated to Y and B fare classes respectively? You decide!

Revenue Management: Demand Forecasting

- Before you can determine the allocations to buckets you need to forecast the demand for each
- Do we need to forecast the demand for both Y and B classes?
- If Y demand came first RM would be unnecessary
- Just sell seats on a First Come First Served basis!
- Since B demand comes first we need to forecast Y demand and allocate inventory accordingly
- Forecasts should be accurate

High forecasts \longrightarrow spoilage

Revenue Management: Demand Forecasting

- Objective: Obtain quick and robust forecasts.
- Number of forecasts: Typically around
- 10,000 fare class demand forecasts, or
- 2,000,000 OD demand forecasts
- every night for medium-sized airlines

Revenue Management: Demand Forecasting

What do we forecast?

- Booking curve, Cancellation curve
- No-shows, Spill, and Recapture
- Revenue values of volatile products
- Up-selling and cross-selling probabilities
- Parameters in the demand function
- Price elasticity of demand

Revenue Management: Demand Forecasting

- Time Series Methods
- Moving Averages
- Exponential Smoothing
- Regression
- Pick-Up Forecasting
- Neural Networks
- Bayesian Update Methods

Forecasting Methods

Original Time Series

Forecasting Methods

Time Series (Seasonality Removed)

Forecasting Methods

Time Series (Trend Removed)

Forecasting Methods

Moving Average

k period moving average: Take the average of the last
k observations to predict the next observation

Forecasting Methods

Exponential Smoothing

Tomorrow's forecast =
Today's forecast +
$\alpha \times$ Error in today's forecast.

Forecasting Methods

Exponential Smoothing ($\alpha=0.3$)

Forecasting Methods

Exponential Smoothing ($\alpha=0.7$)

Forecasting Methods

Forecasting Methods

Forecasting Methods

Pick-Up Forecasting

Days Prior to Usage						Usage			
Date									
-8	-7	-6	-5	-4	-3	-2	-1	0	Date
6	3	11	4	9	8	13	3	13	$9-A p r$
8	6	6	3	16	11	5	4	2	$10-\mathrm{Apr}$
1	2	0	0	3	6	2	6	8	$11-\mathrm{Apr}$
6	0	4	1	2	6	3	2	$?$	$12-A p r$
3	8	8	7	5	1	2	$?$		$13-\mathrm{Apr}$
1	0	2	6	6	4	$?$			$14-\mathrm{Apr}$
0	1	1	6	5	$?$				$15-\mathrm{Apr}$
1	11	12	6	$?$					$16-\mathrm{Apr}$

TRANSP-OR

Forecasting Methods

Neural Networks

Forecasting Methods: Unconstraining

The Problem

True Demand	Booking Limits	Observed Demand
22	24	22
15	20	15
24	17	17
33	35	33
16	16	16
26	22	22
22	22	22
23	15	15
22	22	22
17	17	17

Unconstraining

Forecasting Methods: Unconstraining

The Method (The EM Algorithm)

Observed Demand
22
15
17
33
16
22
22
15
22
17

Find the mean and the
Standard deviation of the
non-truncated demand:

Mean $(m)=(22+15+33+\ldots+17) / 7$
$=21$
Std. Dev. $(\mathrm{s})=6.11$

Forecasting Methods: Unconstraining

The Method (The EM Algorithm)

Observed Demand
22
15
17
33
16
22
22
15
22
17

Unconstraining 17:

Forecasting Methods: Unconstraining

The Method (The EM Algorithm)

Observed Demand
22
15
17
33
16
22
22
15
22
17

Unconstraining 17:

Forecasting Methods: Unconstraining

The Method (The EM Algorithm)

Observed Demand
22
15
23.64
33
16
22
22
15
22
17

In a similar manner, handle the unconstraining of 22 and 15.

Forecasting Methods: Unconstraining

The Method (The EM Algorithm)

Observed Demand
22
15
23.64
33
16
26.53
22
22.79
22
17

True Demand
22
15
24
33
16
26
22
23
22
17

Forecasting Methods: Unconstraining

The Method (The EM Algorithm)

Revenue Management: Inventory Allocation

- Airlines have fixed capacity in the short run
- Airline seats are perishable inventory
- The problem - How should seats on a flight be allocated to different fare classes
- Booking for flights open long before the departure date typically an year in advance
- Typically low yield passengers book early

Revenue Management: Inventory Allocation

- Leisure passengers are price sensitive and book early
- Business passengers value time and flexibility and usually book late
- The Dilemma - How many seats should be reserved for high yield demand expected to arrive late?
- Too much \longrightarrow spoilage - the aircraft departs which empty seats which could have been filled
- Too little \longrightarrow spillage - turning away of high yield passengers resulting in loss of revenue opportunity

Load Factor versus Yield Emphasis

400 Seat Aircraft - Two Fare Classes
(Example from Daudel and Vialle)

	LOAD FACTOR EMPHASIS	YIELD EMPHASIS	REVENUE EMPHASIS
Seats sold For \$ 1000	80	248	192
Seats sold For \$ 750	280	40	132
TOTAL	360	288	324
LOAD FACTOR	90%	72%	81%
REVENUE	290,000	278,000	291,000
YIELD	805	965	898

Need a Revenue Management System to balance load factor and yield

Inventory Allocation

Geneva-Paris-Geneva case study for Baboo

120 seats

Three fare classes, CHF 250, CHF 150, \& CHF 100
Partitioned Booking Limits:

Inventory Allocation: Nesting

120 seats

Three fare classes, CHF 250, CHF 150, \& CHF 100

Nested Booking Limits:

Inventory Allocation: Protection levels

Inventory Allocation: Two-class model

- Total number of seats: 120
- Seats divided into two classes based on fare: CHF 250 and CHF 150.
- Demands are distinct.
- Low fare class demand occurs earlier than the high fare class demand.

Inventory Allocation: Two-class model

Inventory Allocation: Two-class model

45 seats have already been booked in the lower fare class. Should we allow the $46^{\text {th }}$ booking in the same class?

Inventory Allocation: Two-class model

Revenue from the lower fare class:
$\mathrm{R}_{\mathrm{L}}=$ CHF150

Revenue from the higher fare class:
$R_{H}=$ CHF 0 if the higher fare demand <74, CHF 250 otherwise.

Expected Revenue from the higher fare class:
$E\left(R_{H}\right)=$ CHF 0 P(higher fare demand <74)
+CHF250 P(higher fare demand ≥ 74)

Inventory Allocation: Two-class model

Revenue from the lower fare class:
$\mathrm{R}_{\mathrm{L}}=$ CHF150

Revenue from the higher fare class:
$R_{H}=$ CHF 0 if the higher fare demand <74, CHF 250 otherwise.

Expected Revenue from the higher fare class:

```
E}(\mp@subsup{\textrm{R}}{H}{})=\mathrm{ CHF 0 0.9883 (Normal tables)
    + CHF250 0.0117 (Normal tables)
    \approxCHF 3
```


Inventory Allocation: Two-class model

Expected Revenue from the Higher Class

Inventory Allocation: Two-class model

Decision Rule

- Accept up to 86 reservations from the lower fare class and then reject further reservations from this class.

Littlewood's rule

Inventory Allocation: Exercise

What happens if

- Our forecast improves?
- If the fare for the lower fare class drops?

Inventory Allocation: Three-class model

- Total number of seats: 120
- Seats divided into three classes: CHF 250, CHF 150, and CHF 100.
- Demands are distinct.
- Low fare class demand occurs earlier than the high fare class demand.
fedirale de Lausanne

Inventory Allocation: Three-class model

Inventory Allocation: Three-class model

The EMSR-b Method

- Step 1: Aggregate the demand and fares for the higher classes.
- Step 2: Apply Littlewood's formula for two class model to obtain protection levels.

Inventory Allocation: Three-class model

Computing Protection Levels for the High \& Medium Fare Classes: Aggregating Demand $\left(m_{H}=40, s_{H}=15 ; m_{M}=80, s_{M}=30 ; m_{L}=90, s_{L}=40\right)$

Distribution of demand sum:
Normal with
Mean $=40+80=120$
Std. Dev. $=\sqrt{ }(225+900)$
$=33.54$

Inventory Allocation: Three-class model

Computing Protection Levels for the High \&
Medium Fare Classes: Aggregating Fares

$$
\left(\mu_{H}=40, F_{H}=250 ; \mu_{M}=80, F_{M}=150 ; \mu_{L}=90, F_{L}=100\right)
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{Agg}} & =\left(\begin{array}{lll}
40 & 250+80 & 150
\end{array}\right) /(40+80) \\
& =183.33
\end{aligned}
$$

Inventory Allocation: Three-class model

Computing Protection Levels for the High \& Medium Fare Classes: Applying Littlewood's
Formula

$$
\begin{array}{lll}
m_{\text {Agg }}=120, & s_{\text {Agg }}=33.54, & F_{H}=183.33 ; \\
m_{L}=90, & s_{L}=40, & F_{L}=100
\end{array}
$$

Littlewood's Formula:
Find x such that
183.33 $\operatorname{Prob}\left(\right.$ Demand $\left._{\text {Agg }} \geq x\right)=100$

Inventory Allocation: Three-class model

Computing Protection Levels for the High \& Medium Fare Classes: Applying Littlewood's
Formula

$$
\begin{array}{lll}
m_{\text {Agg }}=120, & s_{\text {Agg }}=33.54, & F_{H}=183.33 ; \\
m_{L}=90, & s_{L}=40, & F_{L}=100
\end{array}
$$

Applying Littlewood's Formula: x=116

So 116 seats are reserved for the CHF 250 and CHF 150 fare classes.

Inventory Allocation: Three-class model

Computing Protection Levels for the High Fare Class: Applying Littlewood's Formula

$$
\begin{array}{lll}
m_{H}=40, & s_{\mathrm{H}}=15, & F_{\mathrm{H}}=250 ; \\
\mathrm{m}_{\mathrm{M}}=90, & \mathrm{~s}_{\mathrm{M}}=30, & \mathrm{~F}_{\mathrm{L}}=150 .
\end{array}
$$

Littlewood's Formula:
Find x such that
$250 \operatorname{Prob}\left(\right.$ Demand $\left._{H} \geq x\right)=150$

Inventory Allocation: Three-class model

Computing Protection Levels for the High Fare Class: Applying Littlewood's Formula

$$
\begin{array}{lll}
\mathrm{m}_{\mathrm{H}}=40, & \mathrm{~s}_{\mathrm{H}}=15, & F_{\mathrm{H}}=250 ; \\
\mathrm{m}_{\mathrm{M}}=90, & \mathrm{~s}_{\mathrm{M}}=30, & \mathrm{~F}_{\mathrm{L}}=150 .
\end{array}
$$

Applying Littlewood's Formula: x=36

So 36 seats are reserved for the CHF 250 fare classes.

Inventory Allocation: Three-class model

116 seats protected for CHF 250 \& CHF 150 classes

Inventory Allocation: Four-class model

Capacity: 200 Seats

Demand

Room Type
Executive
Deluxe
Special
Normal

M Mean

Std. Dev.	Fares
10	7000
20	6000
25	4000
100	2500

Inventory Allocation: Willingness to pay

- Consider a booking request that comes for the CHF 100 fare class
- Suppose that 25% of the people demanding bookings in the CHF 100 fare class are willing to jump to the CHF 150 fare class if necessary (up-sell probability)
- Also suppose 2 seats are already booked for the CHF 100 fare class

FEDIRALE DE LAUSANNE

Inventory Allocation: Willingness to pay

If we turn her away, then

- She may pay for higher class
- She may refuse and higher class demand < 118
- She may refuse and higher class demand ≥ 118

Inventory Allocation: Willingness to pay

If we turn her away, then expected value $E=0.25 \times 150$

- She may refuse and higher class demand < 118
- She may refuse and higher class demand ≥ 118

Inventory Allocation: Willingness to pay

If we turn her away, then expected value
E =
0.25×150
$+$
0

- She may refuse and higher class demand ≥ 118

Inventory Allocation: Willingness to pay

If we turn her away, then expected value
E =
0.25×150
$+$
0
$+$
$(1-0.25) \times 1833.33 \times \operatorname{Prob}\left(\right.$ Demand $\left._{\mathrm{Agg}} \geq 118\right)$

Inventory Allocation: Willingness to pay

If $\mathrm{E}>100$, then
we refuse the seat at CHF 100 but remain open for booking it at 150 ;
Else
we book the seat at CHF 100.

Capacity Management

- All service industries, airlines in particular, need to manage limited capacity optimally
- Transferring capacity between compartments
- Upgrades
- Moving Curtains
- Changing aircraft capacity
- Upgrade/downgrade aircraft configuration
- Swapping aircraft

Flight Overbooking

- Airlines overbook to compensate for pre-departure cancellation and day of departure no-shows
- Spoilage cost - incurred due to insufficient OB
- Lost revenue from empty seat which could have been filled
- Denied Boarding Cost (DBC) - incurred due to too much OB
- Cash compensation
- Travel vouchers
- Meal and accommodation costs
- Seats on other airlines
- Cost of lost goodwill

Flight Overbooking

Expected Cost of Overbooking

Capacity

Overbooking: Illustration

- Consider a fare class (with 120 seats) in a airline where booking starts 10 days in advance.
- Each day a certain (random) number of reservation requests come in.
- Each day a certain number of bookings get cancelled (cancellation fraction $=0.1$).

Overbooking: Illustration

Day	No Limits									Bookings
	14									14
2	-1	23								36
3	-1	-2	46							79
4	-1	-2	-	17						88
5	-1	-2	-4	-2	50					129
6	-1	-2	-4	-2	-5	27				142
7	-1	-2	-3	-1	-5	-3	27			154
8	-1	-1	-3	-1	-4	-2	-3	33		172
9	-1	-1	-3	-1	-4	-2	-2	-3	14	169
10	-1	-1	-2	-1	-3	-2	-2	-	-1	153

Overbooking: Illustration

Day	No Overbooking									Bookings
1	14									14
2	-1	23								36
3	-1	-2	46							79
4	-1	-2	-5	17						88
5	-1	-2	-4	-2	41					120
6	-1	-2	-4	-2	-4	13				120
7	-1	-2	-3	-1	-4	-1	12			120
8	-1	-1	-3	-1	-3	-1	-1	11		120
9	-1	-1	-3	-1	-3	-1	-1	-1	12	120
10	-1	-1	-2	-1	-3	-1	-1	-1	-1	108

Overbooking: Illustration

Day								Overbooking 10 seats
1	14							

TRANSP-OR

Overbooking: Illustration

Overbooking: Concept

Cancellations

- Customers cancel independently of each other.
- Each customer has the same probability of cancelling.
- The cancellation probability depends only on the time remaining.

Overbooking: Concept

Let
Y : number of reservations at hand, and
q : probability of showing up for each reservation.

Then
the number of reservations that show up
\approx Binomial with mean $q Y$, and variance $q(1-q) Y$.

We can approximate this with
Normal with mean $q Y$, and variance q(1-q)Y.
fedirale de lausanne

Overbooking: Concept

Criterion - Type I service level: The probability that the demand that shows up exceeds the capacity.

Overbooking: Concept

Criterion - Type I service level:
Capacity:
200 seats
Showing up probability: 0.9
Reqd. Type I service level: 0.5\%

Overbooking limit?
fPfl

Overbooking: Concept

Let the limit be Y .

Overbooking: Concept

- Criterion - Type II service level: The fraction of customers denied service in the long run i.e. (Expected number of customers denied service / Expected number of customers)
- Criterion - Minimize Spillage and Spoilage costs

Overbooking: Cancellation probabilities

Cancellation Probabilities remain constant over time

Overbooking: Cancellation Probabilities

Cancellation Probabilities decreasing with time

