
Decision aid methodologies in transportation

Lecture 3: Crew Scheduling

Prem Kumar

prem.viswanathan@epfl.ch

Transport and Mobility Laboratory

This course is an extension of the same course taught last year by Dr Niklaus Eggenberg.
A few slides are inspired from the material used by him and Prof C Barnhart (MIT Courseware)

mailto:prem.viswanathan@epfl.ch


Summary

● We learnt about the different aircraft scheduling models

● We learnt to formulate these sub-problems into mathematical
models

● We learnt to solve certain problems with heuristics

● However heuristics have their limitations

● Today we will learn about exhaustive enumeration methods

● And of course, crew scheduling problems – crew pairing and crew
rostering
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Mixed Integer Programming Models

● If only the xr and yf variables are continuous instead of discrete, the
model could have been solved with simplex algorithm

● Unlike linear programming, optimal solution is not guaranteed to be
in the corner or peripheral points of the feasible region

● These type of formulations are referred to as Mixed Integer
Programming (MIP) models
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Exhaustive Enumeration: Branch and Bound

● As discussed in the first session, many practical problems can be
represented through a tree

● This tree can be navigated further down till either you find an
optimal solution or conclude that there are no more feasible
solutions

● Branch and Bound algorithm is a specialized tree search technique
used commonly to solve MIPs

● Using B&B, we can solve both Fleet Assignment Model as well as
Maintenance Routing Model



Optimization Terminology

● For a minimization problem

● Upper Bound = value for which we know at least one solution
exists

● Lower Bound = value for which we know that no solution with
lower value exists

● Optimality gap = (UB-LB)/LB

● For a maximization problem

● LB = value for which we know at least one solution exists

● UB = value for which we know that no solution with higher value
exists

● Optimality gap = (UB-LB)/LB



Branch and Bound Methodology

● Step 1: Relax integrality constraints

xj Z+ xj 0

xj {0, 1} [0, 1] 0 xj 1

● Step 2: Solve relaxed problem

● Step 3: Branch-and-bound loop

● Branch: redefine bounds for integral variables with non-integral
solutions or fix binary variables

● Bound: use non-integral objective function value as lower bound

use integral solution as an upper bound

● Stopping criteria: If current LB = UB or every node is evaluated
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Branch and Bound: Binary (0-1) Variable

● In both Fleet Assignment and Aircraft Routing, we formulated the
model with binary variables. They can be solved by B&B technique
as well

● Branching of a variable is done by fixing its value to 0 or 1

{x1 , x2 , x3} = {0.5 , 0.5 , 0}

● How many LPs would a branch and bound algorithm solve?



Branch and Bound: Complexity

● Assuming that a branch and bound algorithm is used on a
mathematical model with m binary variables. What is the maximum
number of nodes (LPs) that need to be solved?

● 1 variable 2 LPs

● 2 variables 4 LPs

● 10 variables 1024 LPs

● m variables 2m LPs

● For Fleet Assignment, note that 10 fleets and 1000 flights problem
would have 10,000 binary variables (and more ground arc variables)

● If we are unfortunate, optimal solution would be known after
solving 2 x 103010 LPs



Branch and Bound: Complexity

● However, there is good news!

● We need not always wait for eternity to solve so many LPs as we
could

● be pruning infeasible nodes

● or, be pruning nodes as we already have a better bound

● For most practical problems, 99.99…% nodes get pruned on the
path towards optimal solution

● But for a MIP with a few thousand variables, even 0.00…01% nodes
could also mean a lot

● But don’t worry, at every node, you have a LB and UB. You can
stop the algorithm when optimality gap is reasonably small



Algorithm Complexity

● Rewind back to the first session and meditate about the greedy
algorithm and shortest path Dijkstra’s algorithm

● Note that greedy algorithm takes the benefits and weights as inputs
to determine value. These values are sorted and picked “greedily” to
get the (optimal) solution.

● Thus the complexity of the algorithm involved is the complexity involved in a
mathematical operation, i.e. division, followed by sorting.

● We know the best sorting algorithm’s complexity is n.log n < n2 (n items)

● A graph with n nodes cannot have more than n*(n-1) (< n2 ) arcs.
Since each arc is visited only once, the worst case complexity of
Dijkstra’s algorithm is bounded by n2



Algorithm Complexity

● Thus, we can estimate the complexity of every algorithm based on
variables (binary variables in assignment, arcs in a network etc.)

● Worst case complexity of the shortest path algorithm with n nodes
is

● 1 node 1 unit

● 2 nodes 4 units

● 10 nodes 100 units

● 10,000 nodes 108 units

● Compare the incremental complexity of an algorithm that is
bounded by polynomial (n2) versus exponential (2n)



Algorithm Complexity: P versus NP
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P versus NP

● Some problems are known to have polynomial time and space
algorithms that produce optimal solutions – such as shortest path
problem, transportation problem, minimal spanning tree etc.

● These problems are categorized to be Polynomial (class P)

● Some other problems – such as travelling salesman problem,
assignment problem, vehicle routing etc. – do not have any known
polynomial time or space algorithms that can guarantee an optimal
solution

● These problems are categorized as Non-Polynomial (NP)

● Interestingly, the fact that there are no known NP algorithms for
these problems does not mean that they cannot be P. It is just that
there are no polynomial time algorithms that are known so far



Branch and Bound: Search Strategies

● Depth First Search: Deep dive on a single node to several child
generations till you reach the last leaf node

● Best First Search: Expand the most “promising” node – for a
minimization problem, it is node with the smallest UB and for a
maximization problem, it is the node with the largest LB

Best First SearchDepth First Search

● Which is better? Depth First or Best First?



Branch and Bound: Commercial Solvers

● You can write your own routine (program) to solve an LP using
simplex or interior point method

● This routine can be embedded in a search tree with different
branching options to be solved as a branch and bound algorithm

● Alternatively you can use a commercial solver that have in-built
branch and bound algorithm implemented

● CPLEX

● GLPK

● Gurobi

● …



Branch and Bound: Advancement

● The idea behind branch and bound algorithm is to reduce the feasible
space by recursively removing the non-integral solutions from this
space

● Note that this is done by adding new constraints (cuts) parallel to the
axes

● But why should the cuts be only added parallel to the axes?

● This gives rise to the concept of cutting planes which are more
efficient that cuts that are parallel to the axes

● The resulting algorithm is called Branch and Cut
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The Crew Scheduling Problem

● Assign crews to cover all flights for a given fleet type

● Minimize cost

● Flying hours

● Incidental expenses such as accommodation at non-domicile stations

● Overtime and Deadheading

● Primary constraints

● Cover constraint: A crew can be at most assigned to one flight at a time

● Respect labor and regulatory laws relating to human work hours

● Side constraints

● Balance: A crew starts and finishes her duty at a base / domicile station

● Robustness



Some Terminologies

● Duty period: 

● A duty period is a day-long sequence of consecutive flights that can be assigned 
to a single crew, to be followed by a period of rest

● Duty rules:

● Duty basically mimics a day’s function of a crew. Thus a duty consists of a set of 
flights forming a sequence over space / time. Typical rules:

Maximum flying time

Minimum layover time

Maximum layover time

Maximum duty time



Some Terminologies

● A sequence of duty periods, interspersed with periods of rest, that
begins and ends at a crew domicile (or crew base)

● A pairing usually extends over a period of 3-7 days and assumes the
following rules:

● First duty starts/last duty ends at the crew base

● Duties are sequential in space/time

● Minimum rest between duties

● Number of overnights

● Maximum number of days away from base

● 8-in-24 rule



Cost Function

● Duty cost is computed as a maximum of:

● Total flying time

● fd * total duty time

● Minimum guaranteed duty pay

● Primarily compensates for flying time, but also compensates for
“undesirable” schedules

● Pairing cost is computed as a maximum of:

● Sum of duty costs

● fp * total time away from base (TAFB)

● Minimum guaranteed pairing pay



Crew Pairing

● In smaller airline companies that does not operate any long haul
flights, crew returns to the base after their duty period for the day

● In such situations, duty and pairing generation are one and the same
problem. Even in larger airline companies, generation of duty is taken
care of within the pairing generation process

● Objective of any crew pairing exercise is to minimize the number of 
pairings that can operate all flights in the schedule

● Problem is often decomposed as daily, weekly, exceptions or monthly

● Deadheading must be avoided to the extent possible



Crew Pairing: Arc-Node Representation



Crew Pairing: Arc-Node Representation

Flight Number Origin Destination Departure Time Arrival Time

121 GVA MXP 06:00 06:50

122 MXP MRS 07:20 08:30

122 MRS GVA 08:55 09:55

901 GVA LCY 06:40 08:30

902 LCY GVA 09:00 10:55

145 GVA NAP 10:25 12:20

146 NAP GVA 13:10 15:10

902 GVA VCE 11:30 12:45

905 VCE GVA 13:55 15:15

905 GVA LCY 16:10 18:00

906 LCY GVA 18:30 20:25

125 GVA MRS 16:20 17:20

125 MRS MXP 17:50 18:55

126 MXP GVA 19:30 20:25



Crew Pairing: Node Representation of flights
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Crew Pairing: Node Representation of flights
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Crew Pairing: Node Representation of flights

GVA GVA

GVAGVA

GVA GVA

TIME

121

122 122

125

125 126

145

146

901

902 906

902

905

905



Crew Pairing: Node Representation of flights
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Crew Pairing: Node Representation of flights
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Crew Pairing: Problem Formulation

● The difference between duty and pairing blurs in the case of a smaller 
airline

● As in this case, most crew members return to the base at the end of the day

● The number of feasible pairings increase drastically with the number 
of flights, even though the computation is pre-processed

● We have to find the minimal set of pairings that would cover all the 
flights – problem formulation is similar to aircraft routing

● If a flight is covered in more than one pairing, the crew would be 
deadheading – which must be avoided to the extent possible

● Note that the problem can be decomposed fleet-wise, airport (or 
base) station-wise, fleet-wise, crew type-wise etc



Crew Pairing Model: Notations

● Sets

– Set of pairings for a specific fleet (P), indexed by p

– Set of flights (F), indexed by f

● Parameters

– cp is the cost of pairing p

– Ap,f is 1 if pairing p has flight f, 0 otherwise

● Decision Variables

– xp equals 1 if pairing p is selected, and 0 otherwise



Pp

pp xc Minimize

FfxA
Pp

pfp   ,1,

}1,0{px

Subject to:

Bounds

Crew Pairing Model: Formulation



● Of course, now that you are aware of B&B algorithm, you can use it
solve this formulation

● However spare a thought: What would happen if there were several
thousand flights for which crew needs to be assigned?

● Theoretically there could be several million (billion?) routes and even
if only 1% of the routes are feasible, it would mean too many routes

● It might even be impossible to add all the routes to the model and
compute

Crew Pairing Model: Solution Algorithm



● Start with a subset of pairings to be input to the model

● This model with a subset of pairings variable is called the “relaxed”
master problem (RMP)

● Generate new “interesting” pairings that are not already in the RMP

● If there are such “interesting” pairings, add them to the RMP and resolve the
new RMP

● If there are NO such “interesting” pairings, RMP has all the pairings required in
the optimal solution

● Start the B&B algorithm on this RMP

● This procedure is called Branch-and-price

Crew Pairing Model: Column Generation



● Start with a subset of columns such that you get a feasible solution

● These columns are part of the master problem. Solve the LP
relaxation of the master problem and find the duals for all variables

● Since the primal variables represent the cost of the pairings, dual
variables can be considered as the “profit” of flights

● Determine the reduced cost of pairings using

● Find one or more pairings with most negative reduced cost to be
added to the master problem (how to find it?)

● Repeat this process till there are no pairings with negative reduced
costs

Crew Pairing: How to find “interesting” pairings?

Ff

ffpp Acc



● A pairing can be seen as a path, where nodes represent flights and
arcs represent valid connections

● Some of the feasibility conditions imposed on a path to decompose
the problem are as follows:

● Paths must start and end at a given crew domicile. For example, if all crew
members of Baboo are based in Geneva, no path can start or end at a station
other than GVA

● Paths cannot repeat the same flight for the same day

● Paths must satisfy duty and pairing rules (remember rules such as 8-in-24 etc.)

● Path costs can be computed using the labels corresponding to pairing reduced
costs

Crew Pairing: Pricing as shortest path problem



Crew Pairing: Column Generation Summary

Determine a 
subset of 
pairings for 
master problem

Solve the 
relaxed master 
problem

Find dual optimal 
solution

Determine new 
interesting pairings

Master problem 
is optimal

STOP

Start B&B

New pairings 
found

Add new 
pairings to 
master problem



● What happens if the algorithm does not find the set of optimal
columns even after several thousands of iterations?

● Of course, you can STOP the optimizer and choose the best result so far

● Note that column generation algorithm can be applied to aircraft
maintenance routing problem as well

● Algorithm can be applied to all “set covering” formulations

● Incidentally, column generation algorithms can be applied to all class of
problems with lot more variables (columns) than constraints (rows)

Column Generation Algorithm Review



Crew Rostering

● Crew rostering is the process of assigning actual crew members –
Flight Commanders, First Officers and Cabin Crew – to different 
pairings

● Input

● A set of pairings (output from crew pairing)

● A set of crew members with required qualifications

● Crew availability and preferences

● Output

● An assignment of crews to pairings



Crew Rostering

Typical Crew Rostering Rules:

● Minimum rest between consecutive pairings

● Maximum flying time over a month

● Vacations and Training requirements for crew members

● Minimum total number of days off

Main difference:

● Focus on crew preferences rather than profitability of the schedule



The Bidline Problem

● Anonymous Pairings are constructed at the outset

● These pairings are combined over a longer time horizon, usually a 
month, to form a schedule

● Schedules are posted and crew members bid for specific schedules

● Senior crew members given higher priority

● Commonly used in the U.S.



Individualized Rostering

● Crew vacation requests, training needs, etc. are taken as inputs

● Monthly schedules are generated based on specific requests

● Planners accept or reject the requests

● Priority of requests based on seniority

● Typical used in Europe and Asia



Crew Rostering: Solution Methodology

● Pairings are combined to form schedules – much the same way as
duties or individual flights are combined to form the pairings

● Problem usually solved using a branch-and-price algorithm such that
every pairing is assigned to a crew member of each type

● In Europe, pairings for each individual crew member is formed based
on the wishes

● Problem is solved jointly for all crew members such that all pairings
are assigned and the cost is kept at the minimum



Pairing versus Rostering

● Similarities

● Sequencing flights or duties to form pairings while sequencing pairings to
form schedules (rosters)

● Set partitioning formulations solved using B&P algorithms

● Differences

● Anonymous schedules versus personalised schedules for each crew
member

● Time horizon of pairing is shorter than time horizon for rostering

● Integration

● Ideally both the problems should be solved jointly, but the problem size
grows up

● Recent research aims to combine pairing and rostering



Cockpit versus Cabin Crew

● Cockpit crew often impose requests to fly as a specific team –
particular First Officer – sometimes a particular cabin crew

● Most of the cockpit crew members vary only by the fleet type,
however cabin crew might require specific qualifications (example,
language skills)

● Cabin crew members have a wider range of fleet types they can staff

● What do you think happens in very long haul flights – example flights
between Chicago to Sydney or Narita?



Reserve Crew Members

● Crew members, especially cockpit crew members, are given flexibility
to decide about flying on their own

● They may refuse to fly if they feel physically or mentally unfit – No
need to undergo any medical tests

● Thus there are possibilities for absenteeism

● This is usually taken care of by providing adequate “reserve” crews
(on-call) at major crew domiciles

● What would be the optimal number of reserve crews at a specific
airport?



Robust Scheduling and Recovery

● Hot topic of research

● Given a disruption or delay, find pairings and rosters such that it
would have maximum opportunities to “swap” around

● Basic objectives of a robust, recoverable schedule are:

● Return to original schedule quickly and with least disruption

● Minimize passenger disruptions

● Limited time horizon -- need fast heuristics


