
Decision aid methodologies in transportation

Lecture 1: Introduction

Prem Kumar

prem.viswanathan@epfl.ch

Transport and Mobility Laboratory

* This course is an extension of the same course taught last year by Dr Niklaus Eggenberg.
A few slides are inspired from the material used by him

mailto:prem.viswanathan@epfl.ch

Summary

● This session will review the basic concepts in Operations Research

● We will also get introduced to the idea and need for discrete
optimization (integer programming)

● An introduction to airline business

Decision-aid optimization

● In the first part of the course, you have learnt about the demand side
models that aid in forecasting and evaluating the demand for a
product or service

● This part of the course deals with supply side models wherein we will
aim to optimize the utilization of supply to maximize revenues

● Context of airlines in this part of the course is only for illustration of
the application of the concepts to a particular business

Decision-aid tools

● A decision aid tool aims at facilitating the work of the decision taker

● Its goal is NOT to replace the decision taker

● The decision taker must know how to exploit the decision aid tool in
order to be efficient

Decision-aid tools used in this course

● APM suite for aircraft scheduling and crew scheduling. Real dataset
from FlyBaboo (now Darwin)

● Baboo data is confidential and hence the APM suite must be uninstalled after
every session

● Optimization with Spreadsheet

● Optimization with MATHPROG

Optimization problems

● All optimization problems are characterized by the presence of the
following:

● An objective function

● A set of boundary conditions (or constraints)

● Optimization problem are solved using mathematical models

● Models are representation of the actual scenario or problem and
having three important features:

● Formulation (mathematical or otherwise, of the objective and constraints)

● Parameters (known in advance)

● Decision variables (to be determined)

Optimization problems

● Optimization problems can have

● Linear objective function and linear constraints

● Non-linear objective function and linear constraints

● Linear objective function and non-linear constraints

● Non-linear objective function and non-linear constraints

● Why is the categorization between linearity and non-linearity?

● We will consider linear objective function and constraints in most of
this course

● Such problems are solved by linear programming techniques

An Example of Linear Program

● A shipping company plans to acquire an aircraft and is designing a
customized interior to carry thermally insulated and normal products

● Temperature controlled products are sold in the market for a profit of
CHF 7 per unit, while normal ones yield a profits of CHF 5 per unit

● Temperature controlled products require 2 KW-h electric power and 3
cu m space for carrying one unit

● Normal products requires 1 KW-h power and 4 cu m space per unit

● Total power and space availability are 1000 KW-h and 2400 cu m

● Assuming that aircraft will always fly full capacity, how many units of
temp controlled and normal products should it be designed for?

An Example of Linear Program

Max 7X1 + 5X2 (Profit)

subject to

2X1 + 1X2 1000 (Power)

3X1 + 4X2 2400 (Space)

Xj 0, j = 1,2 (Non-negativity)

* Note that this can be represented as a vector of
variables, constraint matrix and RHS vector

X2

X1

An Example of Linear Program: Graph Analysis

200

200

12001000800600400

400

600

800

1000

X2

X1

An Example of Linear Program: Graph Analysis

200

200

12001000800600400

400

600

800

1000

Linear Program: Solution

● Corner point theorem: Optimal solution for a linear program always
lies on one of the corner points

● Simplex algorithm visits corner points in sequence

● Optimal solution for the example problem has to be one of (0,0),
(500,0), (0,600) or (320,360)

● Optimal design for temperature controlled products is 320 units and
non-temperature controlled ones is 360 units. Total optimal profits is
CHF (7x320 + 5x360) = CHF 4040

● Interior point algorithm is another method to solve LP

Dual of a Linear Program

Max 7X1 + 5X2 (Profit)

subject to

2X1 + 1X2 1000 (Power) 1

3X1 + 4X2 2400 (Space) 2

Xj 0, j = 1,2 (Non-negativity)

Min 1000 1 + 2400 2 (Cost)

subject to

2 1 + 3 2 7 (Temp controlled) X1

1 + 4 2 5 (Normal) X2

i 0, i = 1,2 (Non-negativity)

Linear Program: Duality

● Note that the optimal solution value of the primal as well as dual is
the same at CHF 4040

● Even though the feasible regions of the primal and dual are exclusive,
they tend to meet at optimality

Primal Feasible

Dual Feasible

Optimal Solution

Linear Program: Duality Theory

● Note that the optimal solution value of the dual variables are CHF
2.60 and CHF 0.60 respectively

● These variables are referred to as the shadow prices of the
constraints in the primal

● Thus one KW-h increase in the availability of power would result in an
incremental profit of CHF 2.60

● Example, if the constraint 2X1 + 1X2 1000 is updated as 2X1 + 1X2

1200, the new profit would be CHF 4040 + CHF 2.60 x (1200-1000) =
CHF 4560

● Obviously shadow prices are valid only for a specific range

Linear Program: Sensitivity Analysis

● What happens if the profit contribution of temp controlled product
changes from CHF 7 to CHF 8 per unit?

● Max 7 X1 + 5 X2 (profit contribution)

● Total profit certainly goes up

● But would this change also mean if the amount of temp controlled
product should be carried more?

● Will it change the optimal solution?

8

X2

X1

Linear Program: Sensitivity Analysis

200

200

12001000800600400

400

600

800

1000Original

Objective Function

7 X1 + 5 X2 = CHF4040

Updated

Objective Function

8 X1 + 5 X2 = CHF4360

X2

X1

Linear Program: Sensitivity Analysis

200

200

12001000800600400

400

600

800

1000

If the OFC of variable
X1 became higher or
lower beyond a
certain range

11 X1 + 5 X2 = $5500

Optimal Solution

(X1 =500, X2 =0)

3 X1 + 5 X2 = $2850

Optimal Solution

(X1 =200, X2 =450)

Linear Program: Reduced Costs

● Note that when the coefficient of profit for temp controlled is
increased from 7 to 11, while making no change in other coefficients,
the optimal solution for normal products is 0

● Reduced cost is defined as the minimum amount by which the
objective function coefficient (OFC) of a variable should change to
cause that variable to become non-zero (0 to 1 in case of integrality)

● Note that the reduced cost of the variable vector is computed using

c – yT A

where cT is the OFC vector, y is the dual optimal solution and A is the
constraint matrix

Integer Program: Introduction

● So that brings us to Integer Programming

● Why do we need integer programming if all problems in the world
(subject to linearity) can be solved with linear programs?

● Assume a situation where we need to determine the number of cars
transported from factory location Fm (m = 1, 2, …, M) to retail outlet
Rn (n = 1, 2, …, N).

● After solving the linear program, we end up with the optimal solution
involving transporting 15.37 cars from F4 to R11

● Obviously the number of transported cars cannot be anything but
integral

● Transportation problem

Integer Program: Examples

http://www.google.ch/imgres?imgurl=http://www.clker.com/cliparts/e/5/2/4/12065706531233240659nicubunu_RPG_map_symbols_Warehouse_1.svg.hi.png&imgrefurl=http://www.clker.com/clipart-warehouse.html&usg=__9d85xaUijYy00NF3AgX9g3dwc1k=&h=476&w=600&sz=133&hl=en&start=18&zoom=1&tbnid=7QRYEatKJIo71M:&tbnh=107&tbnw=135&ei=3XaRTbG5N4besgbtxNXRBg&prev=/search?q=warehouse&um=1&hl=en&rlz=1R2SKPB_enCH369&biw=1659&bih=850&tbm=isch&um=1&itbs=1
http://www.google.ch/imgres?imgurl=http://www.clker.com/cliparts/e/5/2/4/12065706531233240659nicubunu_RPG_map_symbols_Warehouse_1.svg.hi.png&imgrefurl=http://www.clker.com/clipart-warehouse.html&usg=__9d85xaUijYy00NF3AgX9g3dwc1k=&h=476&w=600&sz=133&hl=en&start=18&zoom=1&tbnid=7QRYEatKJIo71M:&tbnh=107&tbnw=135&ei=3XaRTbG5N4besgbtxNXRBg&prev=/search?q=warehouse&um=1&hl=en&rlz=1R2SKPB_enCH369&biw=1659&bih=850&tbm=isch&um=1&itbs=1
http://www.google.ch/imgres?imgurl=http://www.clker.com/cliparts/e/5/2/4/12065706531233240659nicubunu_RPG_map_symbols_Warehouse_1.svg.hi.png&imgrefurl=http://www.clker.com/clipart-warehouse.html&usg=__9d85xaUijYy00NF3AgX9g3dwc1k=&h=476&w=600&sz=133&hl=en&start=18&zoom=1&tbnid=7QRYEatKJIo71M:&tbnh=107&tbnw=135&ei=3XaRTbG5N4besgbtxNXRBg&prev=/search?q=warehouse&um=1&hl=en&rlz=1R2SKPB_enCH369&biw=1659&bih=850&tbm=isch&um=1&itbs=1
http://www.google.ch/imgres?imgurl=http://www.clker.com/cliparts/e/5/2/4/12065706531233240659nicubunu_RPG_map_symbols_Warehouse_1.svg.hi.png&imgrefurl=http://www.clker.com/clipart-warehouse.html&usg=__9d85xaUijYy00NF3AgX9g3dwc1k=&h=476&w=600&sz=133&hl=en&start=18&zoom=1&tbnid=7QRYEatKJIo71M:&tbnh=107&tbnw=135&ei=3XaRTbG5N4besgbtxNXRBg&prev=/search?q=warehouse&um=1&hl=en&rlz=1R2SKPB_enCH369&biw=1659&bih=850&tbm=isch&um=1&itbs=1
http://www.google.ch/imgres?imgurl=http://www.clker.com/cliparts/e/5/2/4/12065706531233240659nicubunu_RPG_map_symbols_Warehouse_1.svg.hi.png&imgrefurl=http://www.clker.com/clipart-warehouse.html&usg=__9d85xaUijYy00NF3AgX9g3dwc1k=&h=476&w=600&sz=133&hl=en&start=18&zoom=1&tbnid=7QRYEatKJIo71M:&tbnh=107&tbnw=135&ei=3XaRTbG5N4besgbtxNXRBg&prev=/search?q=warehouse&um=1&hl=en&rlz=1R2SKPB_enCH369&biw=1659&bih=850&tbm=isch&um=1&itbs=1

Transportation Problem: Math Formulation

● Let us consider a factory-warehouse cost minimization formulation

● Sets

● i is the set of factories where i ={1, 2, …, I}

● j is the set of warehouses where j = {1, 2, …, J}

● Parameters

● cij be the cost of transporting one unit from factory i to warehouse j

● si be the total production at factory i (supply constraint)

● dj be the total demand at warehouse j (demand constraint)

● Decision variables

● xij = number of units transported from factory i to warehouse j

Assignment Problem: Mathematical Formulation

● Objective Function (minimize costs)

● Total supply cannot exceed the factory production capacity and has to
be more than the demand at each warehouse

● Bounds

i j

ijijxc Minimize

isx

jdx

j

iij

i

jij

 ,

 ,

Integerx

x

ij

ij 0

Integer Program: Examples

● Assignment problems

Assignment Problem: More Examples

● Man-Machine assignment (one-to-one)

● Job-Machine assignment (one-to-one, one-to-many, many-to-one)

● Factory-Retailer assignment (one-many, many-one, many-many)

● Train-Platform or Flight-Slots (one-to-one, many-to-one)

● Demand-Supply

● Teacher-Class

● Course-Room

● Man-Woman

● …

Assignment Problem: Mathematical Formulation

● Let us consider a man-machine assignment formulation

● Sets

● i is the set of men where i ={1, 2, …, I}

● j is the set of machines where j = {1, 2, …, J}, where J I

● Parameters

● pij represents the productivity when man i works on machine j

● Decision variables

● xij = 1 when man i is assigned to machine j, 0 otherwise

Assignment Problem: Mathematical Formulation

● Objective Function (maximize productivity)

● Every machine gets exactly one man assigned to it, not all men are
assigned to some machine, though

● Bounds

i j

ijijxp Maximize

ix

jx

j

ij

i

ij

 ,1

 ,1

}1,0{ijx

● Knapsack Problem: Problem originated in the context of
mountaineers who need to pack necessary items for their expedition,
but have a finite weight limitation

Integer Program: Examples

Knapsack Problem: Math Formulation

● Sets

● i is the set of items that are contenders for space in the knapsack where i ={1,
2, …, I}

● Parameters

● vi be the perceived value of item i

● wi be the weight of item i

● W be the maximum allowable weight in the knapsack

● Decision variables

● xi = 1 if item i makes it to the knapsack, 0 otherwise

Knapsack Problem: Mathematical Formulation

● Objective Function (maximize value)

● The total weight of items packed into the knapsack cannot exceed its
capacity

● Bounds

i

iixv Maximize

i

ii Wxw

}1,0{ijx

● How do we solve the knapsack problem?

● Let us say that all the item weights are the same and one unit each

● W would represent the number of items that will go into the
knapsack

● Value will be maximized if all items are sorted by value (highest to
lowest) and we pick the first W items

● Do you agree?

● This algorithm is referred to as GREEDY ALGORITHM because it tends
to optimize that way

Knapsack Problem: Algorithm

● Is the greedy algorithm optimal?

● How to use the greedy algorithm if the weights are not identical?

● Sort the items by - largest to smallest

● Pick the items from the sorted list in a greedy manner till the weight
limit of the knapsack is not exceeded

● Is the greedy algorithm in this example optimal?

Knapsack Problem: Algorithm

i

i

w

v

● Let the value and weight of the items be as given below:

● How to apply greedy algorithm here? Will it be optimal?

Knapsack Problem: Example

Value (v) 6 7 2 12 3 3 14 2

Weight (w) 3 8 1 5 4 2 6 2

v/w 2 0.875 2 2.4 0.75 1.5 2.333333 1

● A greedy algorithm picks up a choice that appears to be the most
beneficial at any decision making stage

● Typical examples:

● Driving from Lausanne to Morges (motorway or route cantonale?)

● Investment in high risk instruments

● Choice of subject and university

● Playing chess, cards etc.

● For some problem, such as continuous knapsack, it works

● Greedy algorithms are easier to implement and test

Greedy Algorithm

● Don’t worry though. Greedy algorithm is not a deadwood if it cannot
be applied to integral knapsack problems

● Greedy algorithm gives optimal (sometimes, sub-optimal but good)
solutions to different integer program problems such as:

● Minimal (maximal) spanning tree

● Bin packing

● Graph coloring

● Home work: Write the mathematical formulation of the bin packing
problem

Greedy Algorithm

Integer Program: More Examples

● What is the shortest path from CHUV (A) to Lausanne Gare (B)?

● So far, we had looked at mathematical formulations

● Now let us change track and look at network formulation for this
integer program problem. Consider the following representation:

● 1 node for the origin (A)

● 1 node for the destination (B)

● 1 node for each crossing

● 1 arc between each crossing nodes if they are directly connected with a road
segment

Integer Program: Shortest Path Problem

● Objective function

● Quickest path / Shortest Path / Minimum cost

● Parameters

● Road network to build the graph

● Deterministic travel times / costs

● Decision variable

● Which arcs should be used and which ones not?

Integer Program: Shortest Path Problem

Shortest Path: Graphical Representation

Shortest Path: How to Solve?

● Let the starting node (CHUV here) be called initial node

● Assign to every node a distance value: set zero for initial node and infinity for all
other nodes

● Mark all nodes as unvisited. Set initial node as current.

● For current node, consider all its unvisited neighbors and calculate their tentative
distance. If this distance is less than the previously recorded distance, overwrite the
distance.

● When we are done considering all neighbors of the current node, mark it as visited.
A visited node will not be checked ever again; its distance recorded now is final and
minimal.

● If all nodes have been visited, finish. Otherwise, set the unvisited node with the
smallest distance (from the initial node, considering all nodes in graph) as the next
"current node" and continue from step 3.

Shortest Path Problem: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Illustration

Dijkstra’s Algorithm: Illustration

● Let us illustrate on a small network instead

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

()

()

()

()

()

()

()

()

()

()

()

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

()

()

()

()

()

()

()

(4)

(1)

()

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

()

()

()

()

()

()

()

(4)

(1)

()

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

()

()

()

()

(4)

(2)

()

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

()

()

()

()

(4)

(2)

()

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

()

()

()

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

()

()

()

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

()

()

()

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

()

()

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

()

()

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

()

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

()

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

()

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

()

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(10)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(10)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

()

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(10)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(10)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(9)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(9)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

()

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(9)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

(11)

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(9)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

(11)

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2
2

2

5

2

14

Origin

Destination

(5)

(7)

(9)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

(11)

(0)

1

2

Dijkstra’s Algorithm: Illustration

2

1

3

4

65

3

1

2

2

1

3

2

2

2

5

2

14

Origin

Destination

(5)

(7)

(9)

(5)

(3)

(2)

(4)

(4)

(1)

(3)

(3)

(11)

(11)

(0)

1

2

● Any integer program can be formulated as a mathematical program
or as a graph (network model)

● Choice depends on convenience of representation

● We have learnt about greedy algorithm and Dijkstra’s algorithm

● During the later sessions, we will learn about solving other
formulations of integer programming

Integer Program: Concluding Notes

● N-Queens problem

● Anybody familiar with chess? Or chess board?

● Consider a n x n chessboard (a generalized version of a 8 x 8 chessboard)

● What is the maximum number of queens that can be placed on the board such
that no queen is in a confronting position with any other

● A confronting position is defined if two queens are either in the same row, or
same column, or the same diagnol

● This problem can be formulated as a 0-1 integer program

Integer Program: Exercise

● Farmer and his pets

● A farmer cuts fresh grass from his field and wants to go back home

● He owns a sheep and a tiger (yes, a tiger!) as pets and takes them to his farm as
well

● As long as he is around, sheep and tiger are well behaved – neither the sheep
eats the grass, nor the tiger attacks the sheep

● But now they arrive at a river bank which that have to cross with a small boat

● The boat can carry only two of the four – farmer, sheep, tiger and bundle of grass

● Obviously only the farmer can steer the boat

● What is the minimum number of trips it would take to cross the river if all the
four are required to reach the other bank without any loss

● How would you formulate this problem?

Integer Program: Exercise

● Need for commercial aviation recognized as early as 1914 when a
private operator flew between two cities in the vicinity of Tampa bay,
barely at a height of 15 m (50 feet) above the ground

● In Europe, KLM was one of the first operators connecting London and
Amsterdam in 1920 as chartered flight to ferry two British passengers

● First international airline with regular flights commenced between
London and Paris in early 1920s

● France connected a mail service to Morocco and named it Aeropostale,
but by 1927 it was bankrupt. Aeropostale and several other small
airline companies merged to form Air France

● KLM also envisioned the concept of a hub network as the vast Dutch
empire had shrunk after the wars

Airline Industry: History

● After WW-II, governments sat together to form regulatory bodies for
commercial aviation

● Several government regulated the aviation business to make the
service reach to far flung areas

● In 1990s, the industry was deregulated in Europe and it gave birth to
several low cost carriers such as Ryan Air and Easyjet

● By 2000s, several traditional airline companies posted heavy losses and
consolidation was the only way forward

● KLM was merged with Air France and Swiss Air was rechristened after
getting acquired by Lufthansa

Airline Industry: Recent History

Airline Industry: World’s Largest Airlines*

Rank Airline 2010 2009 2008 2007 2006 2005

1 Delta Air Lines 162,614,714 161,049,000 106,070,000 72,900,000 73,584,000 86,007,000

2 United Airlines 145,550,000 81,421,000 86,412,000 68,400,000 69,265,000 66,717,000

3 Southwest Airlines 130,948,747 101,339,000 101,921,000 101,911,000 96,277,000 88,380,000

4 American Airlines 105,163,576 85,719,000 92,772,000 98,162,000 99,835,000 98,038,000

5 Lufthansa 90,173,000 76,543,000 70,543,000 66,100,000 53,400,000 51,300,000

6 China Southern Airlines 76,500,000 66,280,000 57,961,000 56,900,000 48,512,000 43,228,000

7 Ryanair 72,719,666 65,300,000 57,647,000 49,030,000 40,532,000 33,368,585

8 Air France-KLM 70,750,000 71,394,000 73,844,000 74,795,000 73,484,000 70,015,000

9 China Eastern Airlines 64,877,800 44,042,990 37,231,480 39,161,400 35,039,700 24,290,500

10 US Airways 59,809,367 58,921,521 62,659,842 66,056,374 66,102,774 71,580,012

* Source: Wikipedia

http://en.wikipedia.org/wiki/Delta_Air_Lines
http://en.wikipedia.org/wiki/United_Airlines
http://en.wikipedia.org/wiki/Southwest_Airlines
http://en.wikipedia.org/wiki/American_Airlines
http://en.wikipedia.org/wiki/Lufthansa
http://en.wikipedia.org/wiki/China_Southern_Airlines
http://en.wikipedia.org/wiki/Ryanair
http://en.wikipedia.org/wiki/Air_France-KLM
http://en.wikipedia.org/wiki/Air_France-KLM
http://en.wikipedia.org/wiki/Air_France-KLM
http://en.wikipedia.org/wiki/Air_France-KLM
http://en.wikipedia.org/wiki/China_Eastern_Airlines
http://en.wikipedia.org/wiki/US_Airways

Airline Industry: Market Forces

Airline & Industry StrategiesRegulatory Environment

Aircraft & Aerospace Capabilities
 Range and speed
Maintenance & support
 Air traffic

 IATA, ICAO
 In Europe: EASA

 Operating model
PTP, H&S etc

● Major aircraft manufacturers include Airbus, Boeing,
Embraer, McDonald Douglas etc.

Fleet B737

B737-300

Sub-fleet B737-500

● Aircrafts are categorized into fleets and sub-fleets

● Sub-fleets have different capacities, operating costs

● Crew is classified by the fleets they can operate

Airline Industry: Aircraft Fleets

● Maintenance checks

 Overnight checks

 Heavy maintenance checks (e.g. A, B, C checks)

● Every station need not have the required maintenance support for
every sub-fleet

● Extended Range Twin Engine Operations (ETOPS)

 Applies when a twin engine aircraft is flying over-water

 Between two ocean crossings, the aircraft has to fly a stipulated number of non
over-water routes

 The same mechanic cannot attend both the engines

Airline Industry: Aircraft Maintenance

● An origin-destination pair on which the flight flies non-stop is called a
leg

● An origin-destination pair on which the flight might have stops in
between is called a segment

oo

o

BA206

BA206

BA206

HKG

BOS

LHR

Airline Industry: Leg and Segment

● Hub and Spoke structure gained prominence during the regulation
years in North America and Europe

● A hub is a central airport that flights are routed through, and spokes
are the routes that planes take out of the hub airport

● The purpose is to save airlines money and give passengers better
routes to destinations

Airline Industry: Hub Model

● Bank structure

● A bunch of arrivals followed by departures

● Directional consideration for bank arrivals/departures is critical

● The bank structure increases the number of connections

Station

15:50

16:15

16:0516:20

Station

15:50

16:15

16:25

16:20

Airline Industry: Bank Structure

● Code sharing helps airline expand market share to regions where they
don’t even operate

● More than one airlines share their airline codes on a particular route

● Boarding ticket / flight information may show:

– DL402 ORD to CDG

– AF192 CDG to DEL

ORD CDG
DL402 DL1404

BOM

Airline Industry: Code Sharing

● ASM= Available Seat Mile (#seats x #miles)

● ASK = Available Seat Kilometer (#seats x #km) (= ASM x 1.61)

● RPM= Revenue Passenger Mile (#passengers x #miles)

● RPK= Revenue Passenger Kilometer (#passengers x #km)

● Yield= Revenue per RPM (income / RPM)

● CASM = Cost per available seat mile (Operating cost / ASM)

● RASM = Revenue per available seat mile(Revenue / ASM)

● LF= Load Factor (RMP / ASM = [#passengers] / [#seats])

Airline Industry: Performance Metrics

● Example – Aircraft with 175 seats flies 2,000 miles with 140
passengers

● ASM= 175 seats x 2,000 miles = 350,000 seat miles

● RPM= 140 passengers x 2000 miles = 280,000 passenger miles

● With 15,000€ revenue and 10,000€ operating costs

● Yield = [15,000€] / [280,000 RPM] = 0.054 €per RPM

● CASM = [10,000€] / [350,000] = 0.029 €per ASM

● RASM = [15,000] / [350,000] = 0.043 €per RPM

● LF = [280,000€] / [350,000] = 0.80 = 80%

Airline Industry: Metrics Calculation

85

● Airline industry has been one of the first to successfully apply
operations research techniques for revenue enhancement as well as
driving cost efficiencies

● OR techniques have been widely used for

– Planning

– Aircraft Scheduling

– Crew Scheduling

– Revenue Management

– Supply Chain Management

– Operations

Airline Industry: Operations Research

