Price Optimization

Michel Bierlaire

```
michel.bierlaire@epfl.ch
```

Transport and Mobility Laboratory

Introduction

- Choice model captures demand
- Demand is elastic to price
- Predicted demand varies with price, if it is a variable of the model
- In principle, the probability to use/purchase an alternative decreases if the price increases.
- The revenue per user increases if the price increases.
- Question: what is the optimal price to optimize revenue?

In short:

- Price $\uparrow \Rightarrow$ profit/passenger \uparrow and number of passengers \downarrow
- Price $\uparrow \Rightarrow$ profit/passenger \downarrow and number of passengers \uparrow
- What is the best trade-off?

Revenue calculation

Number of persons choosing alternative i in the population

$$
\hat{N}(i)=\sum_{s=1}^{S} N_{s} P\left(i \mid x_{s}, p_{i s}\right)
$$

where

- p_{s} is the price of item i in segment s
- x_{s} gathers all other variables corresponding to segment s
- the population is segmented into S homogeneous strata
- $P\left(i \mid x_{s}, p_{i s}\right)$ is the choice model
- N_{s} is the number of individuals in segment s

Revenue calculation

The total revenue from i is therefore:

$$
R_{i}=\sum_{s=1}^{S} N_{s} P\left(i \mid x_{s}, p_{i s}\right) p_{i s}
$$

If the price is constant across segments, we have

$$
R_{i}=p_{i} \sum_{s=1}^{S} N_{s} P\left(i \mid x_{s}, p_{i}\right)
$$

Price optimization

Optimizing the price of product i is solving the problem

$$
\max _{p_{i}} p_{i} \sum_{s=1}^{S} N_{s} P\left(i \mid x_{s}, p_{i}\right)
$$

Notes:

- It assumes that everything else is equal
- In practice, it is likely that the competition will also adjust the prices

Illustrative example

A binary logit model with

$$
\begin{aligned}
V_{1} & =\beta_{p} p_{1}-0.5 \\
V_{2} & =\beta_{p} p_{2}
\end{aligned}
$$

so that

$$
P(1 \mid p)=\frac{e^{\beta_{p} p_{1}-0.5}}{e^{\beta_{p} p_{1}-0.5}+e^{\beta_{p} p_{2}}}
$$

Two groups in the population:

- Group 1: $\beta_{p}=-2, N_{s}=600$
- Group 2: $\beta_{p}=-0.1, N_{s}=400$

Assume that $p_{2}=2$.

Illustrative example

900

Sensitivity analysis

- Parameters are estimated, we do not know the real value
- 95% confidence interval: $\left[\widehat{\beta}_{p}-1.96 \sigma, \widehat{\beta}_{p}+1.96 \sigma\right]$
- Perform a sensitivity analysis for β_{p} in group 2

Sensitivity analysis

