Decision-aid methodologies in transportation

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Decision-aid methodologies in transportation -p. 1/22

Introduction

Roles of transportation systems:

- move people and goods
- from one place (origin) to another (destination)
- safely
- efficiently
- with minimum negative impacts.

Roles of mathematical models

- Transportation systems are complex
 - the elements are complex
 - their interactions are complex
- Need to simplify in order to
 - describe
 - design
 - predict
 - optimize

Decision aid system

In this course...

- Part 1: operational models on the demand side
 - Methodology: choice models
 - Applications: transportation mode choice
 - Lecturer: Michel Bierlaire
 - TA: Jingmin Chen
- Part 2: operational models on the supply side
 - Methodology: operations research
 - Applications: airline scheduling
 - Lecturer: Prem Kumar
 - TA: Nitish Umang

Transportation Demand Analysis

- Demand in transportation is a **derived** demand.
- A derived demand occurs as a result of demand for something else.
- Direct demand:
 - for people: activities
 - for goods: consumption
- Demand / supply interactions
 - The level of service influences travel decisions
 - Travel decisions influence the level of service

Representations of the supply

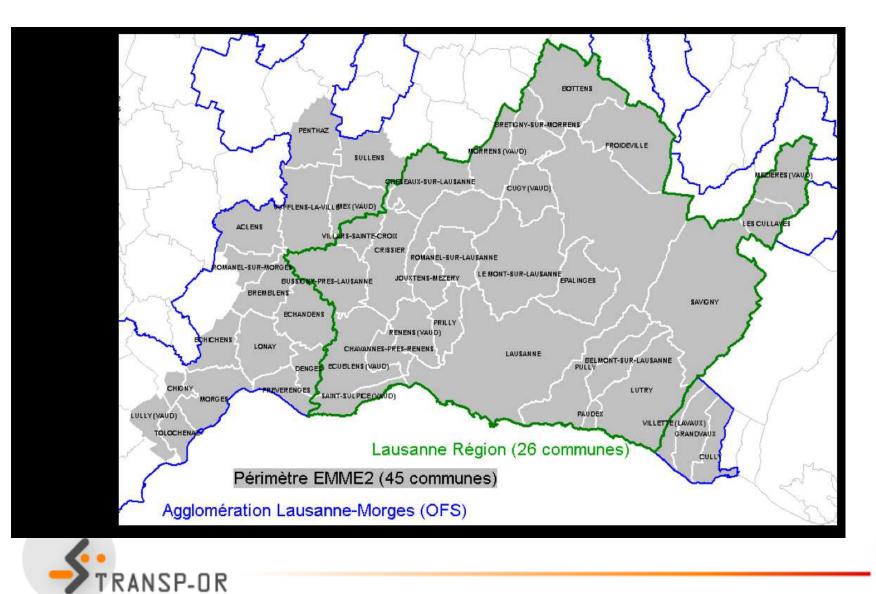
- Transportation supply = infrastructure
- Network representation
- Usually one network per mode (roads, railways, buses, airlines, etc.)
- Classical indicators associated with each link:
 - travel time
 - cost
 - flow (nbr of persons per unit of time)
 - capacity (= max. flow)
- Static (average state) or dynamic (varies with time)

Representations of the demand

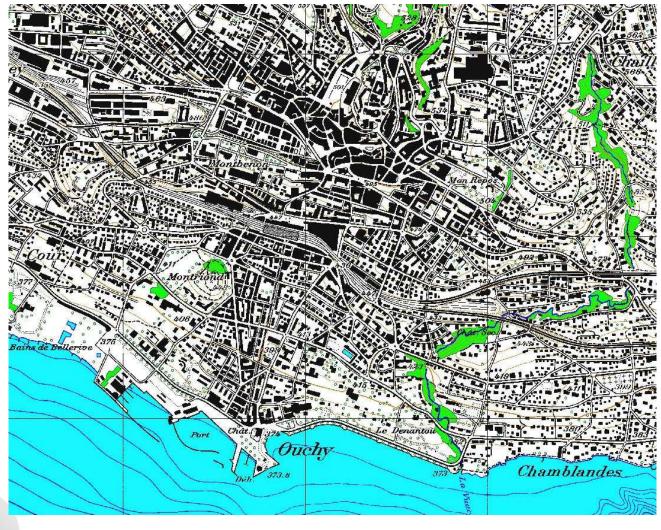
- Aggregate representation
 - Modeling element: flow
 - Flow: number of transported units (i.e. travelers, tons of freight, cars, flights, etc.) per unit of time, at a given location.
- Disaggregate representation
 - Modeling element: the transported unit (i.e. travelers, etc.)
 - Individual behavior of the traveler, or of the actors of the logistic chain.

Modeling framework

- We focus on the transportation of people
- Four step model
- Decompose the travel decision into 4 levels/steps
- Each step involves
 - The description of a specific behavior:
 - 1. Is a trip performed or not?
 - 2. What is the destination?
 - 3. What is the transportation mode?
 - 4. What is the itinerary?
 - Data collection
 - Modeling assumptions

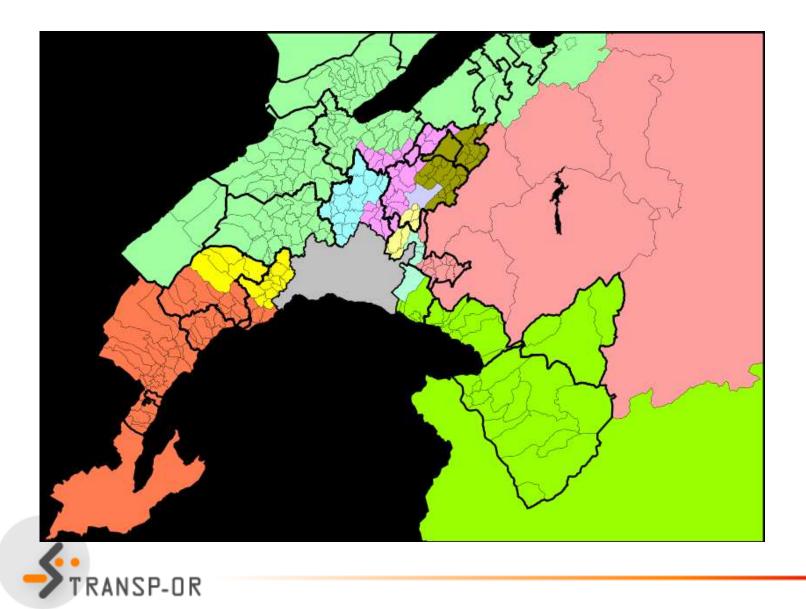

Spatial scope

- The perimeter relevant for the analysis is identified.
- It is partitioned into geographical zones (e.g. Lausanne: 500 zones)
- Assumption: travels within a zone are ignored
- Temporal scope
 - Identification of the period of the analysis
 - For instance, the morning peak-hour, or the evening peak-hour.



Perimeter


Decision-aid methodologies in transportation - p. 10/22


Zoning

Decision-aid methodologies in transportation – p. 13/22

Step 1: trip generation

Is a trip performed or not?

- derived demand
- travel is required when two successive activities are not located at the same place
- Travel purposes (Swiss Micro-census 2000)

	Leisure	41743	40.4%
	Work	23420	22.7%
	Shopping	20297	19.6%
	Education	7912	7.7%
	Service	3352	3.2%
	Business activity	3006	2.9%
	Escorting	1732	1.7%
	Other	1017	1.0%
	Business trip	837	0.8%
OR	Change mode	60	0.1%
<u> </u>			

Step 1: trip generation

- Land use, urban planning and transport closely related
- Question: where are located the activities?
- Main locations to identify in a city:
 - housing
 - work places
 - shops and commercial centers
 - schools
- Many studies focus on home-based trips

Step 1: trip generation

Aggregate representation

- For each zone, determine
 - the number of trips originating from the zone
 - the number of trips reaching the zone during the analysis period
- Modeling tool: linear regression

$$Y = \beta_0 + \beta_1 X$$

with, for instance, Y = nbr of trips, X = population

Disaggregate representation

- Activity choice models
- Location choice models

Step 2: distribution

What is the destination? How many trips starting at a given origin are reaching a given destination?

- Aggregate representation: origin-destination matrix
- Disaggregate representation: destination choice models

Step 2: distribution

Origin-destination matrix

- T_{ij} is the flow between origin *i* and destination *j*
- For each origin *i*, $\sum_j T_{ij} = O_i$
- For each destination j, $\sum_i T_{ij} = D_j$

Step 3: modal split

What is the transportation mode?

- Assume *K* modes
 - car (as driver)
 - car (as passenger)
 - bus
 - metro
 - bike
 - motorbike
 - walk
 - etc.
- From OD matrix T, create K matrices T^k such that

$$T = \sum_{k=1}^{K} T^k$$

Step 3: modal split

• In practice, one generate a split function p such that

 $0 \le p(k|i,j) \le 1, \ \forall i,j,$

and

$$\sum_{k=1}^{K} p(k|i,j) = 1, \; \forall i,j$$

• Obviously, we have

$$T_{ij}^k = p(k|i,j)T_{ij}$$

- The split function p is derived from a mode choice model.
- This will be the main focus of this course

Step 4: assignment

What is the itinerary? Aggregate representation

- Shortest path algorithm
- Based on travel time, so "fastest path"

Disaggregate representation

- Route choice models
- Based on various indicators

Note:

- if many travelers use the best path, it will be congested
- and it will not be the best anymore
- This is captured by the concept of "traffic equilibrium"

- Four step models
 - 1. Generation
 - 2. Distribution
 - 3. Modal split
 - 4. Assignment
- Each step captures a type of choice
 - 1. Activity location choice
 - 2. Destination choice
 - 3. Mode choice
 - 4. Route choice

Main objective of this course:

Introduction to choice models. Theory and case studies.

