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Exercise 1 Consider a logit model for mode choice with three alternatives: car (c), public
transportation (p) and slow modes (s). The utility specifications are the following:

Uc,n = βc,1 + βc,2 · costc,n + βc,3 · ttc,n + εc,n,

Up,n = βp,1 + βp,2 · costp,n + βp,3 · ttp,n + εp,n,

Us,n = βs,1 + βs,3 · tts,n + εs,n,

where costi,n is the cost associated by customer n with alternative i ∈ {c, p}, and tti,n is the
travel time associated with alternative i ∈ {c, p, s} by customer n. We denote by E[εi,n] = αi
the mean of the distribution of the error terms εi,n ∀i ∈ {c, p, s}, n.

Show that it is possible to rewrite the utility functions in order to have E[εi,n] = 0 ∀i ∈ {c, p, s}, n
and the same probabilities.

Solution: First we need to perform a change of variable by adding and subtracting αi to each
utility function:

Uc,n = (βc,1 + αc) + βc,2 · costc,n + βc,3 · ttc,n + (εc,n − αc),
Up,n = (βp,1 + αp) + βp,2 · costp,n + βc,3 · ttp,n + (εp,n − αp),
Us,n = (βs,1 + αs) + βc,3 · tts,n + (εs,n − αs),

In this way, E[εi,n − αi] = 0.

With respect to the choice probabilities, we define a new notation for the changes of variable:
U

′
i,n = V

′
i,n+ε

′
i,n, where V

′
i,n = Vi,n+αi and ε

′
i,n = εi,n−αi, ∀i ∈ {c, p, s}, n. Then, the following

proves that both models provide the same probabilities:
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P(U
′
i,n ≥ U

′
j,n) = P(V

′
i,n + ε

′
i,n ≥ V

′
j,n + ε

′
j,n)

= P(V
′
i,n + ε

′
i,n ≥ V

′
j,n + ε

′
j,n)

= P(Vi,n + αi + εi,n − αi ≥ Vj,n + αj + εj,n − αj)
= P(Vi,n + εi,n ≥ Vj,n + εj,n)

= P(Ui,n ≥ Uj,n)

Exercise 2 Consider the logit model from the previous exercise and define the following addi-
tional specifications (use the model from exercise 1 as a base model for each new specification).
For each specification, indicate if it is linear-in-parameters and if it is linear in the involved
variables.

1. Propose a linear-in-parameters specification and a non linear-in-parameters specification
that captures that the marginal effect of travel time in the utility varies with time.

Solution: One example of a linear-in-parameter specification is

Ui,n = · · ·+ βi,3 · ln(tti,n) + . . . ∀i ∈ {c, p, s}, n.

A not linear-in-parameter specification can be defined with a Box-Cox transformation of
the variable tti,n:

tt
(λ)
i,n =

{
ttλi,n−1

λ if λ 6= 0,

ln(tti,n) if λ = 0,

where λ is an unknown parameter to be estimated. The resulting utility function is

Ui,n = · · ·+ βi,3 · tt(λ)i,n + . . . ∀i ∈ {c, p, s}, n.

Both specifications are nonlinear in tti,n.

2. Propose a specification that captures a variation in the sensitivity towards travel time
for trips made by car when its length is classified as short (ttc,n ≤ 20 minutes), medium
(20 < ttc,n ≤ 60 minutes) and long (ttc,n > 60 minutes).

Solution: We consider a piecewise linear specification. For each of the above-mentioned
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intervals, we define the following variables:

ttshortc,n =

{
ttc,n if ttc,n < 20

20 if ttc,n ≥ 20
(1)

ttmedium
c,n =


0 if ttc,n < 20

ttc,n − 20 if 20 ≤ ttc,n < 60

40 if ttc,n ≥ 60

(2)

ttlongc,n =

{
0 if ttc,n < 60

ttc,n − 60 if ttc,n ≥ 60
(3)

We define a parameter for each of these variables and we modify the utility function for
car as follows:

Uc,n = · · ·+ βshortc,3 · ttshortc,n + βmedium
c,3 · ttmedium

c,n + βlongc,3 · tt
long
c,n + . . . .

This specification is linear-in-parameters and nonlinear in ttc,n.

3. Define a dummy variable for individuals owning a travel card in order to propose a speci-
fication that assumes that owning a travel card might have an impact on the choice.

Solution: We define the dummy variable travel cardn, which is 1 if individual n owns a
travel card and 0 otherwise. One example of such specification is

Up,n = · · ·+ βtravel card · travel cardn + . . . ,

where βtravel card is the parameter associated with travel cardn. In this specification we
assume that the utility of the public transportation alternative is the only one including
this term. Notice that the same term could have been included in another utility function
(e.g., car), but the interpretation of the parameter would be different. In general, these
should be interacted with all ASCs. This case is specific, and motivated by behavioral
assumptions. This specification is both linear-in-parameters and linear in travel cardn.

4. Assume that the variable agen represents the age of individual n. Propose a specification
that captures the fact that the travel time of slow modes varies continuously with the age.

Solution: We can define such an interaction linearly or nonlinearly. We define a parameter
β̂s,3 that represents the sensitivity of the utility function to the variable tts,n when agen =
agerefn , where agerefn is an arbitrary reference value of the age (e.g., the mean, the mode,
the maximum). The utility of slow modes is written as

Us,n = · · ·+ β̂s,3 ·
agen
agerefn

· tts,n + . . .
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in the linear case and as

Us,n = · · ·+ β̂s,3 ·
( agen

agerefn

)λ
· tts,n + . . .

in the nonlinear case, where λ represents the elasticity of
(

agen
agerefn

)λ
with respect of variations

of agen. Both β̂s,3 and λ are unknown parameters to be estimated. The first specification
is linear-in-parameters and the second one is not. Both are nonlinear in the variable tts,n.

Exercise 3 Answer to the following questions.

1. Describe the Independence from Irrelevant Alternatives (IIA) property. Under which cir-
cumstance is the IIA property violated? (There are different circumstances, please describe
here the one discussed in the lecture.)

Solution: The IIA property can be stated in different ways. One statement is that the
relative choice probabilities between any two alternatives is independent of the other avail-
able alternatives. Another statement says that the choice probabilities from a subset of
alternatives is dependent only on the alternatives included in this subset and is indepen-
dent of any other alternatives that may exist. As seen in the lecture, this property is
violated when the alternatives share unobserved attributes (e.g., the fact that the blue bus
alternative and the red bus alternative are essentially the same), so the error terms are
correlated (which violates the independence assumption).

2. Recall the red bus/ blue bus paradox that has been seen in the lecture. Travelers initially
face a decision between two modes of transportation: car and blue bus. The travel times
of both modes, car and blue bus, are equal. Travel time is also the only variable considered
in the utility. Then, we suppose that a third mode, namely the red bus, is introduced and
that the travelers consider it to be exactly the same as the blue bus. Assume that the
error terms for the red and blue bus are correlated and that the correlation is 95%. Derive
the scale parameter (µm) and calculate the probabilities of choosing car and bus1.

Solution: Given that the correlation is 95%, µm is computed as:

1− µ2/µ2m = 0.95⇔ µm =
√

1/0.05 (4)

The probabilities of choosing car and bus can be obtained by using the NL model. The
expected maximum utility of bus is:

Vbus =
1

µm
ln(eµmβT + eµmβT )

= βT +
1

µm
ln 2 (5)

1Note that µ is normalized to one.
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where T is the travel time, and β is its coefficient. The probability of choosing car is:

P (car) =
eµVcar

eµVcar + eµVbus

=
eβT

eβT + e
βT+ 1

µm
ln 2

=
1

1 + 21/µm
(6)

Given the value of µm, finally we obtain:

P (car) =
1

1 + 2
√
0.05

= 0.461 (7)

and
P (bus) = 1− P (car) = 0.539 (8)

mpp/ yo/ tr
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