Forecasting Aggregation

Michel Bierlaire

Introduction to choice models

Motivation

- Prediction about a single individual is of little use in practice.
- Need for indicators about aggregate demand.
- Typical application: aggregate market shares.

Aggregation

Disaggregate model:

 $P_n(i|x_n;\theta)$

- Obtain x_n for each individual n in the population.
- Question: why is C_n omitted?

Aggregate market shares

Number of individuals choosing alternative *i*

$$N_{T}(i) = \sum_{n=1}^{N_{T}} P_{n}(i|x_{n};\theta).$$

Share of the population choosing alternative i

$$W(i) = \frac{1}{N_T} \sum_{n=1}^{N_T} P(i|x_n; \theta) = \mathsf{E} \left[P(i|x_n; \theta) \right].$$

Aggregation

Population	Alternatives				Total
	1	2	• • •	J	TOLAT
1	$P(1 x_1; \theta)$	$P(2 x_1;\theta)$		$P(J x_1;\theta)$	1
2	$P(1 x_2;\theta)$	$P(2 x_2;\theta)$	• • •	$P(J x_2;\theta)$	1
		:	÷	:	:
N	$P(1 x_N;\theta)$	$P(2 x_N;\theta)$	• • •	$P(J x_N;\theta)$	1
Total	N(1)	N(2)		N(J)	N

When the table has too many rows... apply sample enumeration.

When the table has too many columns... apply micro simulation.