Testing

Likelihood ratio test

Michel Bierlaire

Introduction to choice models

Applications of the likelihood ratio test

Benchmarking

Unrestricted model

$$V_{in} = \beta_1 x_{ink} + \cdots$$
 $V_{in} = 0$ $V_{jn} = \beta_2 x_{jnk} + \cdots$ $V_{jn} = 0$ \vdots

Restrictions

$$\beta_k = 0, \ \forall k$$

Restricted model Equal probability model

Benchmarking

Log likelihood of the unrestricted model

$$\mathcal{L}(\widehat{eta})$$

Log likelihood of the restricted model

$$P_{in} = 1/J_n, \ \forall i \in \mathcal{C}_n, \forall n$$

$$\mathcal{L}(0) = -\sum_{i=1}^{N} \log(J_n)$$

$$\mathcal{L}(0) = -\sum_{n=1}^{N} \log(J_n)$$

$$-2(\mathcal{L}(0)-\mathcal{L}(\widehat{\beta}))\sim\chi_{\mathcal{K}}^2$$

Benchmarking revisited

Unrestricted model

$$V_{in} = \beta_1 x_{ink} + \cdots$$
$$V_{jn} = \beta_2 x_{jnk} + \cdots$$
$$\vdots$$

Restricted model Only alternative specific constants

$$egin{aligned} V_{\emph{in}} &= eta_{\emph{i}} \ V_{\emph{jn}} &= eta_{\emph{j}} \ &dots \end{aligned}$$

Restrictions

All coefficients but the constants are constrained to zero.

Benchmarking revisited

Log likelihood of the unrestricted model

$$\mathcal{L}(\widehat{eta})$$

$$\mathcal{L}(c) = \sum_{i=1}^{J} N_i \log(N_i/N)$$

 $P_{in} = N_i/N \ \forall i \in \mathcal{C}, \forall n$

Log likelihood of the restricted

$$-2(\mathcal{L}(c)-\mathcal{L}(\widehat{\beta}))\sim\chi_d^2$$
 with $d=K-J+1$

Benchmarking

Classical output of estimation software

Summary statistics

```
Number of observations = 2544  \mathcal{L}(0) = -2794.870 \\ \mathcal{L}(c) = -2203.160 \\ \mathcal{L}(\hat{\beta}) = -1640.525 \\ -2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})] = 2308.689
```

Test of generic attributes

Unrestricted model Alternative specific

$$V_{in} = \beta_{1i} x_{ink} + \cdots$$
$$V_{jn} = \beta_{1j} x_{jnk} + \cdots$$
$$\vdots$$

Restriction

Restricted model Generic

$$V_{in} = \beta_1 x_{ink} + \cdots$$

 $V_{jn} = \beta_1 x_{jnk} + \cdots$
 \vdots

$$\beta_{1i} = \beta_{1j} = \cdots$$

Test of generic attributes

Log likelihood of the unrestricted model

Log likelihood of the restricted model

$$\mathcal{L}(\widehat{eta}_{\mathsf{AS}})$$

$$\mathcal{L}(\widehat{eta}_{\mathsf{G}})$$

$$-2(\mathcal{L}(\widehat{eta}_G) - \mathcal{L}(\widehat{eta}_{AS})) \sim \chi_d^2$$
 with $d = K_{AS} - K_G$

Segmentation

- ightharpoonup Classify the data into G groups. Size of group $g\colon N_g$.
- ▶ The same specification is considered for each group.
- ▶ A different set of parameters is estimated for each group.

N ₁	N_2	N_3	N ₄	
----------------	-------	-------	----------------	--

$$\mathcal{L}_{N_1}(\widehat{\beta}^1) \mathcal{L}_{N_2}(\widehat{\beta}^2)$$
 $\mathcal{L}_{N_3}(\widehat{\beta}^3)$ $\mathcal{L}_{N_4}(\widehat{\beta}^4)$ $\sum_{g=1}^G \mathcal{L}_{N_g}(\widehat{\beta}^g)$

Ν

Unrestricted model Group specific coefficients

$$V_{in} = \sum_{g=1}^{G} (\delta_{ng} \beta_{1g}) x_{ink} + \cdots$$
 $V_{jn} = \sum_{g=1}^{G} (\delta_{ng} \beta_{2g}) x_{jnk} + \cdots$
 \vdots

Restrictions

Restricted model Generic coefficients

$$V_{in} = \beta_1 x_{ink} + \cdots$$

$$V_{jn} = \beta_2 x_{jnk} + \cdots$$

$$\vdots$$

$$\beta_{k1} = \beta_{k2} = \cdots = \beta_{kG}, \ \forall k.$$

Log likelihood of the unrestricted model

Log likelihood of the restricted model

$$\sum_{g=1}^{G} \mathcal{L}_{N_g}(\widehat{\beta}^g)$$

$$\mathcal{L}_{N}(\widehat{eta})$$

$$-2\left[\mathcal{L}_{N}(\widehat{\beta})-\sum_{g=1}^{G}\mathcal{L}_{N_{g}}(\widehat{\beta}^{g})\right]\sim\chi_{d}^{2}\text{ with }d=\sum_{g=1}^{G}K-K=(G-1)K.$$

Tests of nonlinear specifications

Unrestricted model Power series

$$V_{in} = \sum_{\ell=1}^{L} \beta_{1\ell} \frac{x_{ink}}{x_{ref}}^{\ell} + \cdots$$
 $V_{jn} = \beta_2 x_{jnk} + \cdots$
:

Restricted model Linear specification

$$V_{in} = \beta_1 x_{ink} + \cdots$$
$$V_{jn} = \beta_2 x_{jnk} + \cdots$$
$$\vdots$$

Restrictions

$$\beta_{12}=\beta_{13}=\cdots=\beta_{1L}=0$$

Power series

Test of nonlinear specifications

Log likelihood of the unrestricted model

Log likelihood of the restricted model

$$\mathcal{L}(\widehat{eta}_U)$$

$$\mathcal{L}(\widehat{eta}_{\mathsf{R}})$$

$$-2\left[\mathcal{L}(\widehat{eta}_{R})-\mathcal{L}(\widehat{eta}_{U})
ight]\sim\chi_{d}^{2}$$
 with $d=L-1$

Notes

- Usually not behaviorally meaningful
- Danger of overfitting
- Polynomials are most of the time inappropriate for extrapolation due to oscillation
- Other nonlinear specifications can be used for testing
 - ▶ Piecewise linear
 - Box-Cox