Testing -6.3 *t*-tests

Michel Bierlaire

Solution to the practice quiz

The estimation results are summarized in Table 1.

			Robust		
Parameter		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	One stop–same airline dummy	-1.17	0.278	-4.19	0.00
2	One stop–multiple airlines dummy	-1.45	0.292	-4.98	0.00
3	Elapsed time (hours) (non stop)	-0.341	0.0854	-3.99	0.00
4	Elapsed time (hours) (one stop-same airline)	-0.291	0.0822	-3.54	0.00
5	Elapsed time (hours) (one stop–multiple airlines)	-0.310	0.0802	-3.87	0.00
6	Round trip fare (\$100)	-1.78	0.151	-11.84	0.00
7	Leg room (inches), if male	0.108	0.0232	4.65	0.00
8	Leg room (inches), if female	0.132	0.0221	5.99	0.00
9	Being early (hours)	-0.151	0.0188	-8.02	0.00
10	Being late (hours)	-0.0960	0.0167	-5.73	0.00
11	More than 2 air trips per year (one stop–same airline)	-0.307	0.141	-2.18	0.03
12	More than 2 air trips per year (one stop–multiple airlines)	-0.0910	0.157	-0.58	0.56
13	Male dummy (one stop–same airline)	0.199	0.126	1.59	0.11
14	Male dummy (one stop–multiple airlines)	0.293	0.132	2.21	0.03
15	Round trip fare / income $(\$100/\$1000)$	-24.0	8.09	-2.97	0.00
Summary	statistics				

Number of observations = 2544 $\mathcal{L}(0) = -2794.870$ $\begin{array}{c} \mathcal{L}(0) \\ \mathcal{L}(c) \\ \mathcal{L}(\widehat{\beta}) \\ -2[\mathcal{L}(0) - \mathcal{L}(\widehat{\beta})] \\ \rho^2 \\ \overline{\rho}^2 \end{array}$ -2203.160= = -1641.932= 2305.875 = 0.413 0.407 =

Table 1: Estimation results

1. Testing the null hypothesis that the true value of the coefficient of the variable "being early" is zero requires a t-test. The t statistic of parameter number 9 in Table 1 is -8.02 which is larger in absolute value than 2.56, so the null hypothesis can be rejected at the 1% level. Actually, the fact that the p value is so small that the two first digits after the decimal point are zero, is a sign that the hypothesis can be safely rejected at any reasonable level. The variable plays a role in the model.

2. The next three questions require a *t*-test to compare two coefficients β_i and β_j . The null hypothesis is that both parameters are equal $(H_0 : \beta_i = \beta_j)$ and the *t*-statistic is given by

$$\frac{\widehat{\beta}_i - \widehat{\beta}_j}{\sqrt{\operatorname{Var}(\widehat{\beta}_i - \widehat{\beta}_j)}}$$

where

$$\operatorname{Var}(\widehat{\beta}_i - \widehat{\beta}_j) = \operatorname{Var}(\widehat{\beta}_i) + \operatorname{Var}(\widehat{\beta}_j) - 2\operatorname{Cov}(\widehat{\beta}_i, \widehat{\beta}_j).$$

The variance of a parameter is the square of its standard error. The complete variance-covariance matrix can be found in v634_Boeing_MO.html. It is reported in Table 2 for the involved coefficients.

	β_3	β_4	β_5
β_3	0.00729	0.00627	0.006
β_4	0.00627	0.00676	0.00553
	0.006		0.00643

Table 2: Variance covariance matrix for the involved coefficients

The three *t*-tests are applied below. $H_0: \beta_3 = \beta_4$

$$\frac{\widehat{\beta}_3 - \widehat{\beta}_4}{\sqrt{\operatorname{Var}(\widehat{\beta}_3 - \widehat{\beta}_4)}} = \frac{-0.341 - (-0.291)}{\sqrt{0.00729 + 0.00676 - 2 \times 0.00627}} = -1.287,$$

and the *p*-value is 0.2. The null hypothesis can be rejected only at the 20% level. It is therefore reasonable not to reject it.

3. $H_0: \beta_4 = \beta_5$

$$\frac{\widehat{\beta}_4 - \widehat{\beta}_5}{\sqrt{\operatorname{Var}(\widehat{\beta}_4 - \widehat{\beta}_5)}} = \frac{-0.291 - (-0.310)}{\sqrt{0.00676 + 0.00643 - 2 \times 0.00553}} = 0.412,$$

and the *p*-value is 0.68. The null hypothesis can be rejected only at the 68% level. It is therefore reasonable not to reject it.

4.
$$H_0: \beta_3 = \beta_5$$

$$\frac{\widehat{\beta}_3 - \widehat{\beta}_5}{\sqrt{\operatorname{Var}(\widehat{\beta}_3 - \widehat{\beta}_5)}} = \frac{-0.341 - (-0.310)}{\sqrt{0.00729 + 0.00643 - 2 \times 0.006}} = -0.747,$$

and the *p*-value is 0.46. The null hypothesis can be rejected only at the 46% level. It is therefore reasonable not to reject it.

In conclusion, we have no evidence from the data that suggests that the elapsed time is not generic. Consequently, in such a circumstances, it may be worth investigating a model with a generic elapsed time, that will be more parsimonious.